【資料2-4】 添加物部会 令和7年11月18日

府 食 第 579 号 令和7年8月28日

内閣総理大臣 石破 茂 殿

食品安全委員会 委員長 山本 茂貴

食品健康影響評価の結果の通知について

令和4年8月23日付け厚生労働省発生食0823第2号をもって当委員会に意見を求められた、亜硫酸ナトリウム、次亜硫酸ナトリウム、二酸化硫黄、ピロ亜硫酸カリウム及びピロ亜硫酸ナトリウム(以下、「亜硫酸塩等」という。)に係る食品健康影響評価の結果は下記のとおりですので、食品安全基本法(平成15年法律第48号)第23条第2項の規定に基づき通知します。

なお、食品健康影響評価の詳細は別添1のとおりです。

また、本件に関して行った国民からの意見・情報の募集において、消費者庁に 関連する意見・情報が別添2のとおり寄せられましたので、お伝えします。

亜硫酸水素アンモニウム水の食品健康影響評価の結果については「食品健康影響の結果の通知について」(令和2年12月8日付け府食第774号)の記載にかかわらず下記のとおりとします。

記

亜硫酸塩等及び亜硫酸水素アンモニウム水のグループとしての許容一日摂取量を 0.71 mg/kg 体重/日(二酸化硫黄として)と設定する。

添加物評価書

亜硫酸塩等

(亜硫酸ナトリウム、次亜硫酸ナトリウム、二酸化硫黄、ピロ亜硫酸カリ ウム、ピロ亜硫酸ナトリウム

及び亜硫酸水素アンモニウム水

令和7年(2025年)8月 食品安全委員会

目次

真	Į
〇審議の経緯	2
〇食品安全委員会委員名簿	2
〇食品安全委員会添加物専門調査会専門委員名簿	3
要 約	7
<本評価書作成の理由>1	1
I. 評価対象品目の概要1	1
1. 用途1	1
2. 名称、化学式及び分子量1	1
3. 性状等	3
4. 製造方法14	4
5. 安定性	5
6. 起源又は発見の経緯等10	6
7. 我が国及び諸外国等における使用状況1	7
8. 評価要請の経緯及び添加物指定の概要19	9
Ⅱ. 安全性に係る知見の概要	3
1. 体内動態	6
2. 毒性	8
3. ヒトにおける知見70	0
Ⅲ. 一日摂取量の推計等	8
1. 現在の摂取量	9
2.「亜硫酸塩等」の使用基準改正案を踏まえた摂取量83	3
3. 摂取量推計等のまとめ80	6
Ⅳ. 我が国及び国際機関等における評価8	7
1. 我が国における評価8	7
2. 国際機関等における評価8	7
V. 食品健康影響評価	2
<別紙:略称>90	6
/ 大昭 \ 	

○審議の経緯

2022年8月23日 厚生労働大臣から添加物の規格基準改正に係る食品健康影響

評価について要請(令和4年8月23日厚生労働省発生食

0823 第 2 号)、関係書類の接受

2022年8月30日 第871回食品安全委員会(要請事項説明)

2022年9月8日 第187回添加物専門調査会

2022 年 9 月 15 日 補足資料の提出依頼

2022 年 10 月 5 日 第 188 回添加物専門調査会

2022年10月13日 補足資料の提出依頼

2022年11月22日 補足資料の接受 (2022年10月13日依頼分)

2022 年 12 月 7 日 第 189 回添加物専門調査会

2022年12月23日 補足資料の提出依頼

2024年2月19日 補足資料の接受(2022年9月15日、2022年10月13日、

2022年12月23日依頼分)

2024 年 2 月 28 日 第 195 回添加物専門調査会

2024年6月19日 第196回添加物専門調査会

2024年8月28日 第197回添加物専門調査会

2024年11月8日 第198回添加物専門調査会

2025年1月8日 補足資料の接受

2025年1月17日 第199回添加物専門調査会

2025 年 2 月 10 日 第 200 回添加物専門調査会

2025 年 3 月 10 日 第 201 回添加物専門調査会

2025 年 3 月 17 日 補足資料の提出依頼

2025年3月21日 補足資料の接受(2024年3月17日依頼分)

2025 年 5 月 27 日 第 984 回食品安全委員会(報告)

2025年5月28日から2025年6月26日まで 国民からの意見・情報の募集

2025年8月20日 添加物専門調査会座長から食品安全委員会委員長へ報告

2025 年 8 月 26 日 第 995 回食品安全委員会 (報告)

(8月28日付け内閣総理大臣に通知)

〇食品安全委員会委員名簿

(2021年7月1日から)

山本 茂貴(委員長)

浅野 哲 (委員長代理 第一順位)

川西 徹 (委員長代理 第二順位)

脇 昌子(委員長代理 第三順位)

香西 みどり

松永 和紀

(2024年7月1日から)

山本 茂貴(委員長)

浅野 哲 (委員長代理 第一順位)

祖父江 友孝 (委員長代理 第二順位)

頭金 正博(委員長代理 第三順位)

小島 登貴子

杉山 久仁子

〇食品安全委員会添加物専門調査会専門委員名簿

(2022年4月1日から)

梅村 隆志 (座長) 戸塚 ゆ加里 石塚 真由美 (座長代理 第一順位) 中江 大 髙須 伸二 (座長代理 第二順位) 西 信雄 敬子 北條 仁 朝倉 伊藤 清美 前川 京子 伊藤 裕才 増村 健一 澤田 典絵 松井 徹 多田 敦子 横平 政直

田中 徹也

(2023年10月1日から)

髙須 伸二 (座長) 髙橋 智 石塚 真由美(座長代理 第一順位) 田中 徹也 横平 政直 (座長代理 第二順位) 中江 大 朝倉 敬子 前川 京子 伊藤 清美 増村 健一 伊藤 裕才 松井 徹 片桐 諒子 森田 明美

澤田 典絵

(2024年4月1日から)

髙須 伸二 (座長) 髙橋 智 石塚 真由美 (座長代理 第一順位) 田中 徹也 横平 政直 (座長代理 第二順位) 中江 大 朝倉 敬子 堀端 克良 伊藤 清美 前川 京子 伊藤 裕才 松井 徹 片桐 諒子 森田 明美

澤田 典絵

<第 187~188 回添加物専門調査会専門参考人名簿>

髙橋 智(名古屋市立大学大学院 医学研究科実験病態病理学 教授)

頭金 正博(名古屋市立大学大学院 薬学研究科医薬品安全性評価学分野 教

<第 189 回添加物専門調査会専門参考人名簿>

頭金 正博(名古屋市立大学大学院 薬学研究科医薬品安全性評価学分野 教 授)

<第195回添加物専門調査会専門参考人名簿>

梅村 隆志(ヤマザキ動物看護大学大学院 動物看護学研究科 研究科長)

多田 敦子(国立医薬品食品衛生研究所 食品添加物部 第一室長)

頭金 正博(名古屋市立大学大学院 薬学研究科医薬品安全性評価学分野 教授)

戸塚 ゆ加里(日本大学 薬学部 環境衛生学研究室 教授)

北條 仁(一般財団法人 残留農薬研究所 毒性部 一般毒性担当部長)

<第196回添加物専門調査会専門参考人名簿>

赤池 昭紀(和歌山県立医科大学 教授)

梅村 隆志 (ヤマザキ動物看護大学大学院 動物看護学研究科 研究科長)

近藤 峰生 (三重大学大学院医学系研究科 臨床医学系講座 眼科学 教授)

多田 敦子(国立医薬品食品衛生研究所 食品添加物部 第一室長)

頭金 正博(名古屋市立大学大学院 薬学研究科医薬品安全性評価学分野 教 授)

戸塚 ゆ加里(星薬科大学 衛生化学研究室 教授)

友廣 雅之 (アイナース非臨床眼科研究サービス 代表)

北條 仁(一般財団法人 残留農薬研究所 毒性部 一般毒性担当部長)

<第 197~199 回添加物専門調査会専門参考人名簿>

赤池 昭紀(和歌山県立医科大学 教授)

梅村 隆志(ヤマザキ動物看護大学大学院 動物看護学研究科 研究科長)

近藤 峰生 (三重大学大学院医学系研究科 臨床医学系講座 眼科学 教授)

多田 敦子(国立医薬品食品衛生研究所 食品添加物部 第一室長)

友廣 雅之 (アイナース非臨床眼科研究サービス 代表)

北條 仁(一般財団法人 残留農薬研究所 毒性部 一般毒性担当部長)

<第 200 回添加物専門調査会専門参考人名簿>

梅村 隆志(ヤマザキ動物看護大学大学院 動物看護学研究科 研究科長)

多田 敦子(国立医薬品食品衛生研究所 食品添加物部 第一室長)

戸塚 ゆ加里(星薬科大学 衛生化学研究室 教授)

北條 仁(一般財団法人 残留農薬研究所 毒性部 一般毒性担当部長)

山岨 達也(東京逓信病院 病院長)

<第 201 回添加物専門調査会専門参考人名簿>

梅村 隆志 (ヤマザキ動物看護大学大学院 動物看護学研究科 研究科長)

多田 敦子(国立医薬品食品衛生研究所 食品添加物部 第一室長)

戸塚 ゆ加里(星薬科大学 衛生化学研究室 教授)

北條 仁(一般財団法人 残留農薬研究所 毒性部 一般毒性担当部長)

参考:添加物「亜硫酸水素アンモニウム水」の指定及び規格基準の設定に係る食品 健康影響評価関係

○審議の経緯

2020年2月18日 厚生労働大臣から添加物の指定に係る食品健康影響評価に ついて要請(令和2年2月18日厚生労働省発生食0218第 1号)、関係書類の接受

2020年2月25日 第774回食品安全委員会(要請事項説明)

2020 年 5 月 25 日 第 176 回添加物専門調査会

2020 年 6 月 22 日 第 177 回添加物専門調査会

2020 年 8 月 21 日 第 179 回添加物専門調査会

2020 年 9 月 24 日 第 180 回添加物専門調査会

2020年10月20日 第794回食品安全委員会(報告)

2020年10月21日から11月19日まで 国民からの意見・情報の募集

2020年12月2日 添加物専門調査会座長から食品安全委員会委員長へ報告

2020年12月8日 第799回食品安全委員会(報告)

(同日付け厚生労働大臣に通知)

○食品安全委員会委員名簿

(2018年7月1日から)

佐藤 洋 (委員長)

山本 茂貴(委員長代理)

川西 徹

吉田緑

香西 みどり

堀口 逸子

吉田 充

○食品安全委員会添加物専門調査会専門委員名簿

(2019年10月1日から)

梅村 隆志 (座長) 髙橋 智 頭金 正博 (座長代理) 瀧本 秀美 石井 邦雄 多田 敦子 石塚 真由美 戸塚 ゆ加里 伊藤 裕才 中江 大 宇佐見 誠 西 信雄 北條 仁 杉山 圭一 祖父江 友孝 松井 徹 高須 伸二 横平 政直

<第 176~177、179~180 回添加物専門調査会専門参考人名簿>

伊藤 清美 (武蔵野大学薬学部薬物動態学研究室 教授)

要約

酸化防止剤、保存料及び漂白剤として使用される添加物「二酸化硫黄」、「亜硫酸ナトリウム」、「次亜硫酸ナトリウム」、「ピロ亜硫酸カリウム」及び「ピロ亜硫酸ナトリウム」(以下「「亜硫酸塩等」」という。)並びに発酵助成剤、保存料及び酸化防止剤として使用される添加物「亜硫酸水素アンモニウム水」について、各種試験成績等を用いて食品健康影響評価を実施した。

添加物「亜硫酸塩等」は、従来、食品に酸化防止剤、保存料、漂白剤の用途で使用されている。今般の食品健康影響評価の依頼は、ぶどう酒からアルコールを除去した清涼飲料水(ノンアルコールワイン)においてもぶどう酒と同程度の「亜硫酸塩等」を使用できるようにするための規格基準の改正に係るものである。二酸化硫黄、亜硫酸ナトリウム、次亜硫酸ナトリウム、ピロ亜硫酸カリウム及びピロ亜硫酸ナトリウム(以下「亜硫酸塩等」という。)は、水中では二酸化硫黄、亜硫酸水素イオン及び亜硫酸イオンの平衡状態にあり、主に二酸化硫黄が酸化防止等の効果を持つ。また、使用基準で二酸化硫黄としての残存量が定められている。「亜硫酸塩等」の食品健康影響評価を実施するにあたり、二酸化硫黄としてのADIの特定を検討することとなった。

添加物「亜硫酸水素アンモニウム水」については、食品安全委員会において 2020 年 12 月に食品健康影響評価を取りまとめた。亜硫酸水素アンモニウムは、水中における平衡状態や、二酸化硫黄が活性本体であることが亜硫酸塩等と共通であり、また、「亜硫酸水素アンモニウム水」は二酸化硫黄としての残存基準があることにおいて「亜硫酸塩等」と共通であること等から、「亜硫酸塩等」と「亜硫酸水素アンモニウム水」をグループとして評価を行うことが適当と判断した。

「亜硫酸塩等」及び「亜硫酸水素アンモニウム水」については、二酸化硫黄、 亜硫酸ナトリウム、次亜硫酸ナトリウム、ピロ亜硫酸カリウム、ピロ亜硫酸ナト リウム、亜硫酸水素ナトリウム及び亜硫酸水素アンモニウムの安全性に係る知見 を基に、グループとして安全性に関する検討を総合的に行うこととした。

ピロ亜硫酸カリウムから生じるカリウムイオンについては、添加物評価書「DL -酒石酸カリウム」(2020 年 9 月食品安全委員会決定)において、体内動態及び毒性に係る知見が検討されており、その結果、安全性に懸念を生じさせるような知見は認められていない。また、添加物評価書「フェロシアン化カリウム」(2022年2月食品安全委員会決定)では、「DL-酒石酸カリウム」の後、新たな知見は認められていないとされている。さらに、その後、新たな知見は認められていないため、本評価書では、体内動態及び毒性の検討は行わないこととした。また、ノンアルコールワインから摂取される「ピロ亜硫酸カリウム」由来のカリウムイ

オン摂取量は、ヒトが食事から摂取する量と比較して無視できると判断した。

添加物評価書「亜硫酸水素アンモニウム水」(2020年12月食品安全委員会決定。 以下同じ。)において、「亜硫酸水素アンモニウム水」から生じるアンモニウムイ オンについては、以下のとおり評価している。

「アンモニウムイオンについては、過去に評価されており、その後、新たな知見は認められていないことから、体内動態及び毒性に関する検討は行わなかったが、添加物「亜硫酸水素アンモニウム水」由来のアンモニウムイオン摂取量は、ヒトにおいて食事から産生される量と比較して無視できることから、添加物として適切に使用される場合、添加物「亜硫酸水素アンモニウム水」に由来するアンモニウムイオンは安全性に懸念がないと判断した。(引用終わり)」(参照 4)

遺伝毒性については、「亜硫酸塩等」及び「亜硫酸水素アンモニウム水」を食品添加物として通常摂取する場合において、亜硫酸塩等及び亜硫酸水素アンモニウムには、生体にとって特段問題となる遺伝毒性はないと判断した。

急性毒性、反復投与毒性、生殖発生毒性等の試験結果を検討した結果、ブタ 48 週間経口投与試験(Til ら (1972))において、ピロ亜硫酸ナトリウムの 1.0%以上の投与群で軽度の胃及び食道の所見が認められたことから、NOAEL はこの報告の 0.5%投与群から算出した 71 mg/kg 体重/日 (二酸化硫黄として) と判断した。

発がん性については、マウス2年間発がん性試験(Tanaka ら (1979))及びラット2年間反復投与毒性・生殖毒性・発がん性併合試験(Til ら (1972))において、発がん性は認められないと判断した。

神経毒性については、EFSA が 2022 年に二酸化硫黄及び亜硫酸塩類の再評価を行い、Ozturk ら(2011)の視覚誘発電位の潜時の延長に基づき、BMDL を従来の基準値である 70 mg/kg 体重/日(二酸化硫黄として)よりも低い値である 38 mg/kg 体重/日(二酸化硫黄として)と推定している。しかしながら、視覚系の構造及び機能に多くの種差があり、アルビノラットで示唆された視神経毒性の所見をヒトへ外挿することが困難であることから、視神経毒性に係る NOAEL 等を判断することは適切でないと考えた。

以上のことから、本委員会としては、亜硫酸塩等及び亜硫酸水素アンモニウムの最小の NOAEL は、71 mg/kg 体重/日(二酸化硫黄として)と判断した。

ヒトにおける知見については、アレルギー性疾患患者等における亜硫酸塩等及び亜硫酸水素アンモニウムによるアレルギー様反応誘発の可能性が否定できないと考えられるが、最低誘発用量を含めた量的な議論をすることは困難であった。しかし、気管支喘息患者においては数~10%程度の者が亜硫酸塩に過敏に反応したとする複数の報告があり、二酸化硫黄及び亜硫酸塩による過敏性反応の発症機序等に関する新たな知見の集積を注視すべきと考えた。

現在の「亜硫酸塩等」及び「亜硫酸水素アンモニウム水」由来の二酸化硫黄と しての摂取量は、令和5年度のマーケットバスケット方式摂取量調査に基づき、 20 歳以上の飲酒習慣のある者では 4.7×10⁻² mg/kg 体重/日と推計した。今回の使 用基準改正案を踏まえたノンアルコールワインからの二酸化硫黄としての摂取量 は、飲酒習慣のある者及びぶどうストレートジュース等の摂取者から算出したノ ンアルコールワインの推定一日摂取量 $(0.147 \sim 0.932 \text{ mL/}$ 人/日)と、添加物「亜 硫酸塩等」の使用基準案の最大量(0.35 g/kg)に基づき、それが全て残存した場 合を仮定し、9.3×10⁻⁴~5.9×10⁻³ mg/kg 体重/日と推計した。上述の二つの摂取 量を合計し、今回の使用基準改正案を踏まえた二酸化硫黄としての摂取量は、20 歳以上では、 $4.8 \times 10^{-2} \sim 5.3 \times 10^{-2} \text{mg/kg}$ 体重/日となると推計した。なお、この推 計値は、ぶどう酒及びノンアルコールワインが特定の集団に嗜好されて摂取され る可能性を考慮して算出した値ではあるが、過小な見積りを避けるために、この 推計値を20歳以上の摂取量と仮定したものである。一方、1歳以上20歳未満にお ける現在の「亜硫酸塩等」及び「亜硫酸水素アンモニウム水」由来の二酸化硫黄 としての摂取量は、マーケットバスケット方式摂取量調査に基づき、8.7×10⁻³ mg/kg 体重/日と推計した。

本委員会は、亜硫酸塩等及び亜硫酸水素アンモニウムには遺伝毒性がなく、

ADI を設定することは可能であると判断した。また、アルビノラットで示唆された視覚系への影響に関して、視神経毒性に係る NOAEL 等を判断することは適切でないと考えるものの、神経毒性についてヒトへの毒性影響の懸念があり、無視できない毒性であると考えた。そのため、「亜硫酸水素アンモニウム水」について、毒性影響が重篤でない等の理由から ADI を特定する必要はないと判断した過去の評価(2020年12月食品安全委員会決定)とは異なり、亜硫酸塩等及び亜硫酸水素アンモニウムについては ADI の特定が適当であると判断した。

本委員会としては、亜硫酸塩等及び亜硫酸水素アンモニウムの最小の NOAEL 71 mg/kg 体重/日(二酸化硫黄として)を根拠として、安全係数 100 で除した 0.71 mg/kg 体重/日(二酸化硫黄として)を添加物「亜硫酸塩等」及び「亜硫酸水素アンモニウム水」のグループとしての ADI とした。

なお、「亜硫酸塩等」及び「亜硫酸水素アンモニウム水」による視神経障害等の視覚系への影響はヒトにおいて現時点では報告されていないが、動物における視神経毒性の発現に関する詳細情報、背景メカニズム及びヒトへの外挿可能性等や、さらに、ヒトにおける視覚系への影響等に関する新たな知見の集積を注視すべきと考えた。

<本評価書作成の理由>

今般、添加物「二酸化硫黄」¹、「亜硫酸ナトリウム」、「次亜硫酸ナトリウム」、「ピロ亜硫酸カリウム」及び「ピロ亜硫酸ナトリウム」(以下「「亜硫酸塩等」」という。)について規格基準改正の要請がなされた。二酸化硫黄、亜硫酸ナトリウム、次亜硫酸ナトリウム、ピロ亜硫酸カリウム及びピロ亜硫酸ナトリウム(以下「亜硫酸塩等」という。)は、水中では二酸化硫黄、亜硫酸水素イオン及び亜硫酸イオンの平衡状態にあり、主に二酸化硫黄が酸化防止等の効果を持つ。また、使用基準で二酸化硫黄としての残存量が定められている。「亜硫酸塩等」の食品健康影響評価を実施するにあたり、二酸化硫黄としてのADIの特定を検討することとなった。

添加物「亜硫酸水素アンモニウム水」については、食品安全委員会において 2020 年 12 月に食品健康影響評価を取りまとめた。亜硫酸水素アンモニウムは、水中における平衡状態や、二酸化硫黄が活性本体であることが亜硫酸塩等と共通であり、また、「亜硫酸水素アンモニウム水」は二酸化硫黄としての残存基準があることにおいて「亜硫酸塩等」と共通であること等から、「亜硫酸塩等」と「亜硫酸水素アンモニウム水」をグループとして評価を行うことが適当と判断した。詳細は「V.食品健康影響評価」における記載のとおり。

I. 評価対象品目の概要

1. 用途

(1)添加物「二酸化硫黄」、「亜硫酸ナトリウム」、「次亜硫酸ナトリウム」、「ピロ 亜硫酸カリウム」及び「ピロ亜硫酸ナトリウム」の用途

酸化防止剤、保存料、漂白剤(参照2、3)

(2)添加物「亜硫酸水素アンモニウム水」の用途

発酵助成剤、保存料、酸化防止剤(参照4)

2. 名称、化学式及び分子量

「亜硫酸塩等」及び「亜硫酸水素アンモニウム水」の名称等は、表 1 のとおりである。

表 1 名称、化学式及び分子量

別表第一に示される	食品添加物成分規格とし	化学式	分子量	参照
指定添加物としての	ての名称			
名称				

¹ 本評価書では、食品衛生法施行規則別表第一(参照 1)(以下「別表第一」という。)に示される指定添加物としての二酸化硫黄を表す際には「二酸化硫黄」と表記し、また指定添加物としての亜硫酸ナトリウム等も同様に表記した。

二酸化硫黄	_	SO_2 2	64.06	(参照
				1, 5)
亜硫酸ナトリウム	和名:亜硫酸ナトリウム	Na ₂ SO ₃ •	252.15(7 水	(参照
	(別名:亜硫酸ソーダ)	$n\mathrm{H}_2\mathrm{O}$	和物) 126.04	1, 6)
	英名:Sodium Sulfite	(n = 7 又は	(無水物)	
		0) 3		
次亜硫酸ナトリウム	和名:次亜硫酸ナトリウ	Na ₂ S ₂ O ₄ ⁴	174.11	(参照
	Д			1, 6)
	(別名:ハイドロサルフ			
	アイト)			
	英名: Sodium			
	Hydrosulfite			
ピロ亜硫酸カリウム	和名:ピロ亜硫酸カリウ	$K_2S_2O_5$ 6	222.33	(参照
5	A			1, 6)
	(別名:メタ重亜硫酸カ			
	リウム)			
	英名: Potassium			
	Metabisulfite			
	(英別名: Potassium			
	Pyrosulfite)			
	和名:亜硫酸水素カリウ	_	_	(参照
	ム液 7			1, 6)
	(別名:重亜硫酸カリウ			
	ム液、酸性亜硫酸カリウ			
	ム液)			
	英 名 : Potassium			
	Hydrogen Sulfite Solution			
ピロ亜硫酸ナトリウ	和名:ピロ亜硫酸ナトリ	Na ₂ S ₂ O ₅ 9	190.11	(参照
	ウム			1, 6)

_

² CAS 登録番号: 7446-09-5 (Sulfur dioxide)

 $^{^3}$ CAS 登録番号:7757-83-7(Sodium sulfite)、CAS 登録番号:10102-15-5(Sodium sulfite heptahydrate)

⁴ CAS 登録番号: 7775-14-6 (Sodium dithionite)

^{5 「}ピロ亜硫酸カリウム」(参照 1) に該当する食品添加物成分規格として、『ピロ亜硫酸カリウム』と『亜硫酸 水素カリウム液』がある。『亜硫酸水素カリウム液』はピロ亜硫酸カリウムの水溶液であり、亜硫酸水素イオン (HSO_3) とカリウムイオン (K^+) に解離している。(参照 7)

⁶ CAS 登録番号: 16731-55-8 (Potassium disulfite)

 $^{^7}$ 亜硫酸水素カリウム(KHSO $_3$ = 120.17、Potassium hydrogen sulfite、CAS 登録番号 7773-03-7) 25.0%以上を含む。(参照 3、6)

⁹ CAS 登録番号: 7681-57-4 (Sodium disulfite)

	/四月) 5 季 平 井 歌 1			
∠ 8	(別名:メタ重亜硫酸ナ			
	トリウム、酸性亜硫酸ソ			
	ーダ)			
	英 名 : Sodium			
	Metabisulfite			
	(英 別 名 : Sodium			
	Pyrosulfite)			
	和名:亜硫酸水素ナトリ	_	_	(参照
	ウム液 10			1, 6)
	(別名:酸性亜硫酸ソー			
	ダ液)			
	英名: Sodium Hydrogen			
	Sulfite Solution			
亜硫酸水素アンモニ	和名:亜硫酸水素アンモ	_	_	(参照
ウム水	ニウム水 11			1, 4)
	英名: Ammonium			
	Hydrogen Sulfite Water			

3. 性状等

今般、厚生労働省(現消費者庁)に「亜硫酸塩等」の規格基準の改正を要請した者(以下「規格基準改正要請者」という。)は、その成分規格について、「規格に変更なし」としている(参照3)。

「亜硫酸塩等」及び「亜硫酸水素アンモニウム水」の現在の成分規格等では、 性状は表2のとおりである。

表 2 性状

別表第一に示される指	性状
定添加物としての名称	
二酸化硫黄	無色の気体又は液体で、刺激臭を持つ。 (参照 5、8)
亜硫酸ナトリウム	無~白色の結晶又は白色の粉末である。 (参照 6)
次亜硫酸ナトリウム	白〜明るい灰白色の結晶性の粉末であり、においがないか、又は

^{8 「}ピロ亜硫酸ナトリウム」(参照 1) に該当する食品添加物成分規格として、『ピロ亜硫酸ナトリウム』と『亜硫酸水素ナトリウム液』がある。『亜硫酸水素ナトリウム液』はピロ亜硫酸ナトリウムの水溶液であり、亜硫酸水素イオン(HSO3)とナトリウムイオン(Na+)に解離している。(参照 7)

¹⁰ 亜硫酸水素ナトリウム(NaHSO3= 104.06、Sodium hydrogen sulfite、CAS 登録番号 7631-90-5)34.0%以上を含む。(参照 3、6)

 $^{^{11}}$ 亜硫酸水素アンモニウム(NH4HSO $_3$ = 99.11、Ammonium hydrogen sulfite、CAS 登録番号:10192-30-0) 13.0%以上を含む。(参照 4、6)

	わずかに二酸化硫黄のにおいがある。 (参照 6)
ピロ亜硫酸カリウム5	ピロ亜硫酸カリウム:白色の結晶又は結晶性の粉末で、二酸化硫
	黄のにおいがある。 (参照 6)
	亜硫酸水素カリウム液:淡黄色の液体で、二酸化硫黄のにおいが
	ある。 (参照 6)
ピロ亜硫酸ナトリウム8	ピロ亜硫酸ナトリウム:白色の粉末で、二酸化硫黄のにおいがあ
	る。 (参照 6)
	亜硫酸水素ナトリウム液:淡黄色の液体で、二酸化硫黄のにおい
	がある。 (参照 6)
亜硫酸水素アンモニウ	淡黄色の液体である。 (参照 4)
ム水	

4. 製造方法

「亜硫酸塩等」及び「亜硫酸水素アンモニウム水」の製造方法については、表3のとおりである。

表 3 製造方法

	,
別表第一に示さ	製造方法
れる指定添加物	
としての名称	
二酸化硫黄	工業的には硫黄又は硫化物(黄鉄鉱、黄銅鉱など)を焼き、また石油精製
	の際に得られる。(参照8)
亜硫酸ナトリウ	炭酸ナトリウムの飽和溶液に二酸化硫黄を通じ、亜硫酸水素ナトリウムの
4	溶液を作り、これに当量の炭酸ナトリウムを加えて中和し、かき混ぜなが
	ら冷却し結晶として得る。(参照7)
次亜硫酸ナトリ	(1) 亜鉛末を水に懸濁させ、これに二酸化硫黄を通じ、次亜硫酸亜鉛溶
ウム	液を作る。この溶液に炭酸ナトリウム溶液を加えて塩基性炭酸亜鉛を
	沈殿させ、次亜硫酸ナトリウム溶液を得る。これにエタノールを加え
	るか、又は食塩により塩析して次亜硫酸ナトリウム二水和物
	$(Na_2S_2O_4 \cdot 2H_2O)$ を析出させる。この水和物は不安定であるから、
	加温又はエタノール洗浄などの方法により脱水して無水物を製する。
	(2) 亜硫酸ナトリウムと亜鉛末による方法
	(3)亜硫酸水素ナトリウムの電解還元法などもある。(参照 7)
ピロ亜硫酸カリ	ピロ亜硫酸カリウム:水酸化カリウムの飽和溶液に精製した二酸化硫黄の
ウム5	ガスを通じ、亜硫酸水素カリウムの溶液を作る。これを撹拌しながら濃縮
	するとピロ亜硫酸カリウムの微細な結晶が析出する。これを分離して低温

	で乾燥する。(参照 7)
	亜硫酸水素カリウム液:二酸化硫黄と炭酸カリウムの反応により得る。
	(参照 7)
ピロ亜硫酸ナト	ピロ亜硫酸ナトリウム:炭酸ナトリウムの飽和溶液に酸性を呈するまで精
リウム8	製した二酸化硫黄を通じ、亜硫酸水素ナトリウムの溶液を作る。この液に
	更に炭酸ナトリウムを追加し、再び二酸化硫黄を通じると結晶が析出す
	る。これを分離して低温で乾燥する。(参照7)
	亜硫酸水素ナトリウム液:炭酸ナトリウムの飽和水溶液に精製した二酸化
	硫黄を通じて作る。(参照7)
亜硫酸水素アン	アンモニア水溶液に気体の二酸化硫黄を吹き込んで製造する。(参照 4)
モニウム水	

5. 安定性

規格基準改正要請者並びに添加物「亜硫酸水素アンモニウム水」の評価時に、厚生労働省に「亜硫酸水素アンモニウム水」の添加物としての指定及び規格基準の設定を要請した者(以下「指定等要請者」という。)は、それぞれ「亜硫酸塩等」及び「亜硫酸水素アンモニウム水」の安定性について、表 4 のとおりとしている。(参照 2、4)

表 4 安定性

別表第一に	安定性
示される指	
定添加物と	
しての名称	
二酸化硫黄	二酸化硫黄 (SO ₂) は、水溶液に添加されると分子状二酸化硫黄 (SO ₂ ・
	H ₂ O)、亜硫酸水素イオン(HSO ₃ ·)及び亜硫酸イオン(SO ₃ ··)になる。
	$SO_2 + H_2O = SO_2 \cdot H_2O = HSO_3 \cdot + H^+ = SO_3^2 \cdot + 2H^+$
	二酸化硫黄及び各々のイオン間の化学的平衡は、水溶液の pH に依存する。
	pK₁=1.81、pK₂=6.91 であり、一般的なぶどう酒の pH3~4 では、HSO₃ が主
	要な形態である。(参照9)
亜硫酸ナト	結晶物は加温すると結晶水に溶けた後、無水物となる。水溶液はアルカリ性
リウム	を呈する。空気中で徐々に酸化され、硫酸ナトリウムとなる。鉱酸を加える
	と二酸化硫黄を発生する。(参照 7)
次亜硫酸ナ	不安定で、湿気、空気により次第に亜硫酸塩及び硫酸塩に変化する。また、
トリウム	80℃以上に熱すると自己分解し発熱する。(参照 7)
ピロ亜硫酸	本品は水に溶けやすいが、エタノールには溶けない。また、空気中で徐々に

カリウム	酸化される。ピロ亜硫酸カリウムは水溶液中で加水分解し、2 分子の亜硫酸				
	水素カリウムに変化し (参照 7)、亜硫酸水素イオン (HSO3) 及びカリウム				
	イオン (K+) に解離する。水溶液は酸性を呈する (1%溶液の pH は 3.5~				
	4.5)。(参照 10)				
	$K_2S_2O_5 + H_2O \rightarrow 2KHSO_3$				
ピロ亜硫酸	本品は水に良く溶け、温湯には更によく溶解する。エタノールには難溶であ				
ナトリウム	る。やや吸湿性があり、亜硫酸水素ナトリウム(NaHSO3)となり、これは				
	ピロ亜硫酸ナトリウムよりも不安定で、空気中の酸素を吸収し硫酸塩に変化				
	しやすい。強力な還元性がある。(参照 10)				
	ピロ亜硫酸ナトリウムは水溶液中で加水分解し、2 分子の亜硫酸水素ナトリ				
	ウムに変化し、亜硫酸水素イオン(HSO_{3})及びナトリウムイオン(Na^{+})				
	に解離する。(参照 7) 水溶液は弱酸性を呈する (1%溶液の pH は 4.0~				
	5.5)。(参照 10)				
	$Na_2S_2O_5 + H_2O \leftrightharpoons 2NaHSO_3$				
亜硫酸水素	欧州連合 (EU ¹²) 流通品の情報を引用し、「未開封の状態で製造から 2 年間				
アンモニウ	が使用期限とある。」と説明し、また、亜硫酸水素アンモニウムから解離した				
ム水	亜硫酸水素イオン及びアンモニウムイオンのうち、亜硫酸水素イオンは、水				
	中で二酸化硫黄と平衡状態にあり、酸性条件ではその平衡は二酸化硫黄の側				
	に大きく傾いているとしている。(参照 4)				

6. 起源又は発見の経緯等

規格基準改正要請者は、亜硫酸塩及び二酸化硫黄は古来より防腐剤として用いられており(参照 7)、ローマ時代にはぶどう果汁やワインを入れる壺の殺菌に硫黄ガス(亜硫酸)が用いられていたこと(参照 11)及び健全な品質の良いワインの醸造に亜硫酸は欠かせないもので、中世の頃から微生物抑制作用及び酸化防止作用目的で使用されており長い歴史を持つものであること(参照 12)を説明している。(参照 3)

添加物評価書「亜硫酸水素アンモニウム水」において、「亜硫酸水素アンモニウム水」の起源又は発見の経緯等については、以下のとおりとしている。

「指定等要請者は、食品添加物として国際ブドウ・ワイン機構 (OIV) 加盟国間で使用されてきたが、2017 年にオーストラリアでもワインの製造に使用できる加工助剤に認可され、使用できるようになったと説明している。

また、亜硫酸水素アンモニウムはワインの原料となる発酵前あるいは発酵中の 果汁やマスト ¹³に加えることで、液中で二酸化硫黄及びアンモニウムイオンを生

¹² 本文中で用いられた略称については、別紙に名称等を示す。

¹³ 指定等要請者は、用語の定義として、マストは「ブドウを除梗・破砕してできた、果汁に果皮、種子等の固

じ、アンモニウムイオンは遊離アミノ態窒素の一種として酵母が直接資化できる 栄養源となり、円滑な果汁の発酵を促進する。一方、二酸化硫黄は果汁の酸化を 防ぐ役割を果たす。さらに、果汁中では水と反応し、二酸化硫黄と亜硫酸水素イ オンの形をとるが、主に二酸化硫黄が果汁の発酵に好ましくない有害微生物の発 生及び増殖を抑制する効果を持つとしている。(引用終わり)」(参照 4)

7. 我が国及び諸外国等における使用状況

(1) 我が国における使用状況

我が国において、「亜硫酸塩等」及び「亜硫酸水素アンモニウム水」(以下「本件評価対象品目」という。)は、添加物として指定されている。(参照 13)

(2)諸外国等における使用状況

① コーデックス委員会

二酸化硫黄、亜硫酸ナトリウム、亜硫酸水素ナトリウム、ピロ亜硫酸カリウム、ピロ亜硫酸ナトリウム、亜硫酸カリウム及びチオ硫酸ナトリウムは、亜硫酸塩類として、食品添加物に関するコーデックス一般規格(GSFA)のリストに酸化防止剤、脱色剤 ¹⁴、小麦粉処理剤 ¹⁴、保存料 ¹⁵及び金属イオン封鎖剤 ¹⁶として収載されている。これらの最大使用基準値について、「ぶどう酒」(食品分類 14.2.3。ノンアルコールワインを含む。)に対しては 350 mg/kg (ただし、特定の白ワインの場合は、400 mg/kg)(二酸化硫黄としての残存量)と規定されている。(参照 3、14、15)

添加物評価書「亜硫酸水素アンモニウム水」において、「亜硫酸水素アンモニウム水」のコーデックス一般規格については、以下のとおりとしている。

「亜硫酸水素アンモニウム水は、食品添加物に関するコーデックス一般規格(GSFA)のリストに収載されていない。(引用終わり)」(参照4)

② 米国における使用状況

二酸化硫黄、亜硫酸ナトリウム、亜硫酸水素ナトリウム、ピロ亜硫酸ナトリウム、亜硫酸水素カリウム及びピロ亜硫酸カリウムは、亜硫酸塩類として、一般に安全とみなされる(GRAS)物質のリストに収載されている。肉類、ビタミン B₁の補給剤及び生の果物や野菜への使用を除き、適正製造規範

形物が混合したものでアルコール発酵が終了していないものを指す。アルコール分の有無は問わない。」としている。

¹⁴ 脱色剤及び小麦粉処理剤として収載されているのは、二酸化硫黄、亜硫酸ナトリウム、ピロ亜硫酸ナトリウム及びピロ亜硫酸カリウムのみである。

¹⁵ 保存料として収載されているのは、二酸化硫黄、亜硫酸ナトリウム、亜硫酸水素ナトリウム、ピロ亜硫酸ナトリウム、ピロ亜硫酸カリウム及び亜硫酸カリウムのみである。

¹⁶ 金属イオン封鎖剤として収載されているのは、チオ硫酸ナトリウムのみである。

(GMP)の下で使用が認められている(参照3、16)。なお、アルコール製品 (ノンアルコールワインを除く。)に対する使用については別途規制され、二酸化硫黄及び亜硫酸塩類が 350ppm (二酸化硫黄としての残存量) を超えないことが規定されている(参照3、17、18)。

添加物評価書「亜硫酸水素アンモニウム水」において、「亜硫酸水素アンモニウム水」の米国における使用状況については、以下のとおりとしている。

「亜硫酸水素アンモニウム水は、一般に安全とみなされる(GRAS)物質のリストに収載されていない。

一方で、指定等要請者は、「2005 年より自国の醸造規則を満たしたワインの流通を相手国が認めるとする 2 国間協定が EU とアメリカで結ばれているため、EU 域内からの輸入ワインについては亜硫酸水素アンモニウムを EU の醸造規則を遵守して使用したワインもアメリカ国内で流通できることとなっている。」と説明している。(引用終わり)」(参照 4)

③ 欧州連合 (EU) における使用状況

二酸化硫黄、亜硫酸ナトリウム、亜硫酸水素ナトリウム、ピロ亜硫酸ナトリウム、ピロ亜硫酸カリウム、亜硫酸カルシウム、亜硫酸水素カルシウム及び亜硫酸水素カリウムは、亜硫酸塩類として添加物の使用が認められている。これらの最大使用基準値について、ノンアルコールワインに対しては、200 mg/L 又は mg/kg(二酸化硫黄としての残存量)と規定されている。(参照3、19)

添加物評価書「亜硫酸水素アンモニウム水」において、「亜硫酸水素アンモニウム水」の EU における使用状況については、以下のとおりとしている。

「EU において、亜硫酸水素アンモニウム水は食品添加物として指定されていない ¹⁷。

一方で、EU 域内で適用される醸造規則において、亜硫酸水素アンモニウムは、アルコール発酵の目的に限ってブドウや発酵中の果汁及びマスト 13 にのみ 0.2 g/L 以下(塩として)の量で使用できるとされている。(引用終わり)」(参照 4)

④ オーストラリア及びニュージーランドにおける使用状況

オーストラリア及びニュージーランドでは、二酸化硫黄、亜硫酸ナトリウム、亜硫酸水素ナトリウム、ピロ亜硫酸ナトリウム、ピロ亜硫酸カリウム、 亜硫酸カリウム及び亜硫酸水素カリウムの最大使用基準値(二酸化硫黄としての残存量)について、ワイン、発泡ワイン及び強化ワインに対しては、糖

¹⁷ EU 域内で使用が認められている食品添加物が規定された欧州議会・閣僚理事会規則 1333/2008 又は欧州委員会規則 1129/2011 には記載されていない。なお、同規則は加工助剤には適用されない。

を35 g/L以上含む場合で400 mg/kg、それ未満の場合で250 mg/kgと規定されている(参照3、20)。ノンアルコールワインに対しては、原料であるワインに亜硫酸塩類を使用してキャリーオーバーになることは認められているが、アルコール分を除去後に使用することは認められていない。(参照3、20、21)また、オーストラリア国内で製造されるワインに対しては、二酸化硫黄、ピロ亜硫酸カリウム、亜硫酸カリウム及び亜硫酸水素カリウムの使用が認められている。これらの最大使用基準値(二酸化硫黄としての残存量)について、ワイン、発泡ワイン及び強化ワインに対しては、糖を35 g/L以上含む場合で300 mg/L、それ未満の場合で250 mg/Lと規定されている(参照3、22)。添加物評価書「亜硫酸水素アンモニウム水」において、「亜硫酸水素アンモニウム水」のオーストラリア及びニュージーランドにおける使用状況については、以下のとおりとしている。

「オーストラリア及びニュージーランドでは、亜硫酸水素アンモニウムは、 ワイン、発泡ワイン及び強化ワインの醸造における酵母の栄養とする目的で、 適正製造規範 (GMP) 下での使用が認められている。

また、オーストラリアでは、亜硫酸水素アンモニウムは、2017年に加工助剤として追加された。(引用終わり)」(参照4)

8. 評価要請の経緯及び添加物指定の概要

今般、「亜硫酸塩等」について、厚生労働省(現消費者庁)に規格基準改正の要請がなされ、関係書類が取りまとめられたことから、食品安全基本法(平成 15 年 法律第 48 号)第 24 条第 1 項第 1 号の規定に基づき、食品安全委員会に対して、食品健康影響評価の要請がなされたものである。

消費者庁(2024年3月末まで厚生労働省)は、食品安全委員会の食品健康影響評価結果の通知を受けた後に、「亜硫酸塩等」の使用基準について、表5のように改正することを検討するとしている。

なお、清涼飲料水(ぶどう酒からアルコールを除去したもの及びこれにぶどう果汁(濃縮ぶどう果汁を含む。以下同じ。)を加えたものに限る。この項において同じ。)及び清涼飲料水に加えるぶどう果汁は、現行では、その他の食品として、その $1 \, \mathrm{kg}$ につき二酸化硫黄として $0.03 \, \mathrm{g}$ 以上残存しないように使用しなければならないとされているところ、改正案では、果実酒等と同じくその $1 \, \mathrm{kg}$ につき $0.35 \, \mathrm{g}$ 以上残存しないように使用しなければならないとするものである。(参照 2)

「亜硫酸水素アンモニウム水」については、2020年2月、厚生労働省(現消費者庁)に添加物としての指定及び規格基準の設定の要請がなされ、関係書類が取りまとめられたことから、食品安全基本法第24条第1項第1号の規定に基づき、食品安全委員会に対して、食品健康影響評価の要請がなされ、2020年12月、食品健康影響評価が通知されたものである。2021年1月15日、厚生労働省(現消

費者庁)は、添加物としての指定及び表6のとおり規格基準の設定を行った。

表 5 「亜硫酸塩等」の使用基準改正案

[添加物一般の目]

改正案	現行
添加物一般	添加物一般
1. (略)	1. (略)
2. 次の表の第1欄に掲げる添加物を含む第2	2. 次の表の第1欄に掲げる添加物を含む第2

2. 次の表の第1欄に掲げる添加物を含む第2 欄に掲げる食品を、第3欄に掲げる食品の製造又は加工の過程で使用する場合には、それぞれ第1欄に掲げる添加物を第3欄に掲げる食品に使用するものとみなす。

2. 次の表の第1欄に掲げる添加物を含む第2欄に掲げる食品を、第3欄に掲げる食品の製造又は加工の過程で使用する場合には、それぞれ第1欄に掲げる添加物を第3欄に掲げる食品に使用するものとみなす。

食品に使用するものとみなす。			食品に使	用するものとみなす。	
第1欄	第2欄	第3欄	第1欄	第2欄	第3欄
亜 硫 酸	甘納豆、えび、果実	第 2 欄	亜 硫 酸	甘納豆、えび、果実	第 2 欄
ナトリ	酒、乾燥果実(干しぶ	に掲げ	ナトリ	酒、乾燥果実(干しぶ	に掲げ
ウム、	どうを除く。)、乾燥じ	る食品	ウム、	どうを除く。)、乾燥じ	る食品
次亜硫	ゃがいも、かんぴょ	以外の	次亜硫	ゃがいも、かんぴょ	以外の
酸ナト	う、キャンデッドチェ	食品	酸ナト	う、キャンデッドチェ	食品
リ ウ	リー(除核したさくら		リ ウ	リー(除核したさくら	
ム、ニ	んぼを砂糖漬にしたも		ム、ニ	んぼを砂糖漬にしたも	
酸化硫	の又はこれに砂糖の結		酸化硫	の又はこれに砂糖の結	
黄、ピ	晶を付けたもの若しく		黄、ピ	晶を付けたもの若しく	
口亜硫	はこれをシロップ漬に		口亜硫	はこれをシロップ漬に	
酸カリ	したものをいう。)、5		酸カリ	したものをいう。)、5	
ウム及	倍以上に希釈して飲用		ウム及	倍以上に希釈して飲用	
びピロ	に供する天然果汁、コ		びピロ	に供する天然果汁、コ	
亜 硫 酸	ンニャク粉、雑酒 <u>、清</u>		亜 硫 酸	ンニャク粉、雑酒、ゼ	
ナトリ	涼飲料水(ぶどう酒か		ナトリ	ラチン、ディジョンマ	
ウ ム	らアルコールを除去し		ウ ム	スタード、糖化用タピ	
(以下	<u>たもの及びこれにぶど</u>		(以下	オカでんぷん、糖蜜、	
「亜硫	う果汁 (濃縮ぶどう果		「亜硫	煮豆、水あめ及び冷凍	
酸塩	<u>汁を含む。以下この項</u>		酸塩	生かに	
等」と	において同じ。) を加え		等」と		
いう。)	たものに限る。以下こ		いう。)		
	<u>の項において同じ。)、</u>		(略)	(略)	(略)
	清涼飲料水に加えるぶ				
	<u>どう果汁</u> 、ゼラチン、				
	ディジョンマスター				
	ド、糖化用タピオカで				
	んぷん、糖蜜、煮豆、				
	水あめ及び冷凍生かに				
(略)	(略)	(略)			

[亜硫酸塩等の目]

(下表は、「二酸化硫黄」の使用基準改正案である。「亜硫酸ナトリウム」、「次亜 硫酸ナトリウム」、「ピロ亜硫酸ナトリウム」及び「ピロ亜硫酸カリウム」の使用 基準改正案は、表中「二酸化硫黄は,」を「亜硫酸ナトリウムは,」、「次亜硫酸ナ トリウムは、」、「ピロ亜硫酸ナトリウムは、」及び「ピロ亜硫酸カリウムは、」と読 み替える。)

改正案

二酸化硫黄は、ごま、豆類及び野菜に使用し てはならない。二酸化硫黄は、二酸化硫黄とし て、かんぴょうにあってはその1kgにつき5.0g 以上, 乾燥果実(干しぶどうを除く。)にあって はその 1kg につき 2.0g 以上, 干しぶどうにあ ってはその 1kg につき 1.5g 以上, コンニャク 粉にあってはその 1kg につき 0.90g 以上, 乾燥 じゃがいも, ゼラチン及びディジョンマスター ドにあってはその 1kg につき 0.50g 以上、果実 酒(果実酒の製造に用いる酒精分 1 容量パーセ ント以上を含有する果実搾汁及びこれを濃縮し たものを除く。), 雑酒,清涼飲料水(ぶどう酒 からアルコールを除去したもの及びこれにぶど う果汁(濃縮ぶどう果汁を含む。以下この目に おいて同じ。)を加えたものに限る。以下この 目において同じ。)及び清涼飲料水に加えるぶ どう果汁にあってはその 1kg につき 0.35g 以 上,キャンデッドチェリー(除核したさくらん ぼを砂糖漬にしたもの又はこれに砂糖の結晶を 付けたもの若しくはこれをシロップ漬にしたも のをいう。以下この目において同じ。)及び糖 蜜にあってはその1kgにつき0.30g以上,糖化 用タピオカでんぷんにあってはその1kgにつき 0.25g 以上, 水あめにあってはその 1kg につき 0.20g 以上, 5 倍以上に希釈して飲用に供する 天然果汁にあってはその 1kg につき 0.15g 以 上, 甘納豆及び煮豆にあってはその1kgにつき 0.10g 以上, えび及び冷凍生かににあってはそ のむき身の 1kg につき 0.10g 以上, その他の食 品(キャンデッドチェリーの製造に用いるさく らんぼ, ビールの製造に用いるホップ並びに果 実酒の製造に用いる果汁,酒精分1容量パーセ|合であって,かつ,同表の第3欄に掲げる食品 ント以上を含有する果実搾汁及びこれを濃縮し たものを除く。)にあってはその 1kg につき 0.030g(第 2 添加物の部 F 使用基準添加物一般 | 以上残存する場合は,その残存量)以上残存し の表の亜硫酸塩等の項に掲げる場合であって, かつ,同表の第3欄に掲げる食品(コンニャク を除く。) 1kg 中に同表の第 1 欄に掲げる添加 物が,二酸化硫黄として,0.030g 以上残存す

現行

二酸化硫黄は、ごま、豆類及び野菜に使用し てはならない。二酸化硫黄は、二酸化硫黄とし て、かんぴょうにあってはその1kgにつき5.0g 以上, 乾燥果実(干しぶどうを除く。)にあって はその 1kg につき 2.0g 以上, 干しぶどうにあ ってはその 1kg につき 1.5g 以上, コンニャク 粉にあってはその 1kg につき 0.90g 以上, 乾燥 じゃがいも、ゼラチン及びディジョンマスター ドにあってはその 1kg につき 0.50g 以上, 果実 酒(果実酒の製造に用いる酒精分 1 容量パーセ ント以上を含有する果実搾汁及びこれを濃縮し たものを除く。)及び雑酒にあってはその 1kg につき 0.35g 以上, キャンデッドチェリー(除 核したさくらんぼを砂糖漬にしたもの又はこれ に砂糖の結晶を付けたもの若しくはこれをシロ ップ漬にしたものをいう。以下この目において 同じ。)及び糖蜜にあってはその 1kg につき 0.30g 以上, 糖化用タピオカでんぷんにあって はその 1 kg につき 0.25 g 以上,水あめにあって はその 1kg につき 0.20g 以上, 5 倍以上に希釈 して飲用に供する天然果汁にあってはその 1kg につき 0.15g 以上、甘納豆及び煮豆にあっては その 1kg につき 0.10g 以上, えび及び冷凍生か ににあってはそのむき身の 1kg につき 0.10g 以 上, その他の食品(キャンデッドチェリーの製 造に用いるさくらんぼ、ビールの製造に用いる ホップ並びに果実酒の製造に用いる果汁, 酒精 分1容量パーセント以上を含有する果実搾汁及 びこれを濃縮したものを除く。)にあってはそ の 1kg につき 0.030g(第 2 添加物の部 F 使用基 準添加物一般の表の亜硫酸塩等の項に掲げる場 (コンニャクを除く。) 1kg 中に同表の第1欄に 掲げる添加物が、二酸化硫黄として、0.030g ないように使用しなければならない。

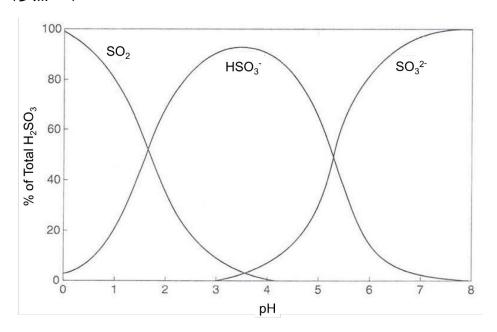
る場合は、その残存量)以上残存しないように 使用しなければならない。

表 6 「亜硫酸水素アンモニウム水」の使用基準

添加物名	使用基準				
亜硫酸水素ア	亜硫酸水素アンモニウム水は、ぶどう酒の製造に用いるぶどう果				
ンモニウム水	汁及びぶどう酒以外の食品に使用してはならない。				
	亜硫酸水素アンモニウム水の使用量は、亜硫酸水素アンモニウム				
	塩として、ぶどう酒1Lにつき、0.2g以下でなければならない。た				
	だし、ぶどう酒の製造に用いるぶどう果汁に使用する亜硫酸水素				
	ンモニウム水は、ぶどう酒に使用するものとみなす。				
	亜硫酸水素アンモニウム水は、二酸化硫黄として、ぶどう酒(ぶ				
	どう酒の製造に用いる酒精分1容量%以上を含有するぶどう搾汁及				
	びこれを濃縮したものを除く。) 1 kg につき 0.35 g 以上残存しない				
	ように使用しなければならない。				

Ⅱ. 安全性に係る知見の概要

ア 規格基準改正要請者及び指定等要請者の説明を踏まえると、亜硫酸塩等及び 亜硫酸水素アンモニウムについて、以下のとおりである。(参照 4、3)


二酸化硫黄は、水溶液中では式1のとおり二酸化硫黄、亜硫酸水素イオン及び亜硫酸イオンの平衡状態($pKa_1 = 1.8$ 、 $pKa_2 = 7.2$)にあり、存在比は水溶液のpHに依存する。亜硫酸ナトリウムから生じた亜硫酸イオンや、亜硫酸水素アンモニウムから解離した亜硫酸水素イオンも同様である。(参照3、4、23)

また、参考として、各 pH に応じた二酸化硫黄、亜硫酸水素イオン及び亜硫酸イオンにおける存在割合を図 1 に示す。

式 1

 $SO_2 + H_2O = SO_2 \cdot H_2O = HSO_3 \cdot + H^+ = SO_3^2 \cdot + 2H^+$

図 1 各pHに応じた二酸化硫黄、亜硫酸水素イオン及び亜硫酸イオンの存在割合 (参照 24)

ピロ亜硫酸塩は、亜硫酸水素塩の無水物であり、式2のとおり水溶液中では 亜硫酸水素イオンを生成する。(参照 23)

式 2

 $S_2O_5^{2-} + H_2O \rightleftharpoons 2HSO_3^{-}$

次亜硫酸ナトリウムは、式 3 のとおり水溶液中、嫌気的条件下でチオ硫酸ナトリウム及び亜硫酸水素ナトリウムに、また、好気的条件下で硫酸水素ナトリ

ウム及び亜硫酸水素ナトリウムに分解する 18。(参照 25)

式3

 $2Na_2S_2O_4 + H_2O \rightarrow Na_2S_2O_3 + 2NaHSO_3$ (嫌気的条件下) $Na_2S_2O_4 + O_2 + H_2O \rightarrow NaHSO_4 + NaHSO_3$ (好気的条件下)

チオ硫酸ナトリウムは、式 4 のとおり酸性溶液 19 中で亜硫酸ナトリウム及び硫黄に分解し (参照 26)、亜硫酸ナトリウムは亜硫酸イオンとなる 20 。

式 4

H+

 $Na_2S_2O_3 \leftrightharpoons Na_2SO_3 + S$ OH^-

硫酸水素ナトリウムは硫酸イオンになる(参照 27)。硫酸イオンは、二酸化硫 黄及び他の亜硫酸塩 21 からも代謝によって生じる 22 。(参照 23)

また、亜硫酸水素ナトリウムは亜硫酸水素イオンとなる(参照3)。

なお、チオ硫酸ナトリウム以外の亜硫酸塩から硫黄が分離されるという知見は得られていないが、摂取された亜硫酸塩の一部は腸内細菌叢により還元代謝を受け硫化水素になり、二酸化硫黄と硫化水素を反応させると酸化還元反応より単体の硫黄が生成されることから、硫黄が生体内で存在する可能性がある。(参照 28)

以上から、ピロ亜硫酸カリウム、ピロ亜硫酸ナトリウム及び次亜硫酸ナトリウムは、二酸化硫黄と同様の式1の平衡状態又は硫酸イオンとなる。すなわち、二酸化硫黄、亜硫酸水素イオン及び亜硫酸イオンの平衡状態となる又は他の亜硫酸塩と同様に硫酸イオンを生じる。

また、食品添加物として次亜硫酸ナトリウムそのものの国際機関等における

¹⁸ 規格基準改正要請者は、嫌気的条件下を酸素がほとんどない場合とし、次亜硫酸ナトリウムの濃度が濃い場合及び胃腸管下部内部のような嫌気的条件にあるときであり、好気的条件下を酸素がある場合とし、湿気のあるときと説明している。(参照 3、25)

¹⁹ 規格基準改正要請者は、酸性溶液には胃液 (pH:1~2)、ワイン (pH:2.8~4.0) 等が含まれるものと考えられると説明している。(参照 28)

²⁰ JECFA (1978) は、チオ硫酸ナトリウムについて、酸性溶液中で分解し、二酸化硫黄と硫黄を遊離するとしており (参照 30)、これはチオ硫酸ナトリウムから生じた亜硫酸イオンが式1に示す平衡状態となり、二酸化硫黄に変化するためと考えられる。

²¹ 本評価書において、亜硫酸の塩を一般的に指す場合や、原著において「sulfite」、「sulfites」、「sulphite」及 び「sulphites」等と記載されている場合の総称として用いた。

²² EFSA (2016) は、亜硫酸塩類は吸収後、亜硫酸オキシダーゼ (SOX) による酵素的反応によって硫酸イオンになるとしている (参照 23)。

評価は確認できないものの、次亜硫酸ナトリウムはその不安定性から、身体組織における主要な生成物である亜硫酸水素ナトリウム、亜硫酸ナトリウム、チオ硫酸ナトリウム、二酸化硫黄とピロ亜硫酸ナトリウムの評価により行うことができるとされている(参照 3、29)。チオ硫酸ナトリウムは、酸性溶液中で亜硫酸ナトリウムと硫黄に分解し、また胃酸によって亜硫酸ナトリウム、ピロ亜硫酸カリウム、ピロ亜硫酸ナトリウム等の亜硫酸塩と同じ分解生成物を生成することが予想されるため、チオ硫酸ナトリウムは、JECFA(1978)において、二酸化硫黄、亜硫酸ナトリウム、ピロ亜硫酸カリウム及びピロ亜硫酸ナトリウムとともにグループとして評価されている。(参照 3、30)

本委員会は、上記規格基準改正要請者及び指定等要請者の説明を踏まえ、本件評価対象品目については、二酸化硫黄、亜硫酸ナトリウム、次亜硫酸ナトリウム、ピロ亜硫酸カリウム、ピロ亜硫酸ナトリウム、亜硫酸水素ナトリウム及び亜硫酸水素アンモニウムの安全性に係る知見を基に、グループとして安全性に関する検討を総合的に行うこととした。

- イ ピロ亜硫酸カリウムから生じるカリウムイオンについては、添加物評価書「DL-酒石酸カリウム」(2020年9月食品安全委員会決定)において、体内動態及び毒性に係る知見が検討されており、その結果、安全性に懸念を生じさせるような知見は認められていない(参照31)。また、添加物評価書「フェロシアン化カリウム」(2022年2月食品安全委員会決定)では、「DL-酒石酸カリウム」の後、新たな知見は認められていないとされている(参照32)。さらに、その後、新たな知見は認められていないとされている(参照32)。さらに、その後、新たな知見は認められていないため、本評価書では、体内動態及び毒性の検討は行わないこととした。
- ウ 規格基準改正要請者は、一般に亜硫酸塩は食品に添加されると様々な食品成分と反応し(参照 33)、亜硫酸塩が食品と反応する主な要因は亜硫酸イオン(SO₃²)の求核性によると説明している(参照 34)。規格基準改正要請者は、食品中のグルコースとアミノ酸の反応(メイラード褐変)による中間体の褐変対策として亜硫酸塩を添加した際の反応生成物が 3-deoxy-4-sulfohexosulose(DSH)であると説明している ²³(参照 28)。DSH については、現時点で体内動態、遺伝毒性及び急性毒性に係る知見が得られており、安全性に懸念を生じさせるような知見は認められていない(参照 36、37)。そのため、本評価書では、体内動態及び毒性の検討は行わないこととした。

 $^{^{23}}$ 規格基準改正要請者は、たとえば、ワインにはブドウ糖(グルコース)とグリシン(アミノ酸)が含まれていることから(参照 35)、中間体から「亜硫酸塩等」の添加により DSH が生成される条件は整っていると説明している。(参照 28)

エ 添加物評価書「亜硫酸水素アンモニウム水」において、アンモニウムイオン の安全性については、以下のとおりとしている。

「アンモニウムイオンについては、添加物評価書「アンモニウムイソバレレート(第 2 版)」(2014)及び「硫酸アルミニウムアンモニウム、硫酸アルミニウムカリウム」(2017)において、安全性に係る知見として、添加物「アンモニウムイソバレレート」又は「硫酸アルミニウムアンモニウム」を摂取することで体内に取り込まれるアンモニアの量は、ヒトにおいて食事から産生されるアンモニアの量の変動の範囲内と考えられ、また、ヒト体内で産生されたアンモニアと同様に代謝されると考えられるとされていることから、安全上の懸念はないと考えた。その後、新たな知見は認められていないことから、本評価書では、アンモニアの体内動態及び毒性の検討は行わないこととした。(引用終わり)」(参照 4)

1. 体内動態

(1) 吸収

① 吸収(総説)(EFSA (2016))

EFSA (2016) は、胃内における亜硫酸水素イオン及び二酸化硫黄の平衡はpHに応じて変動し、亜硫酸水素イオンは絶食時及び無酸症で、二酸化硫黄は胃酸分泌時の酸性条件でそれぞれ優勢になるが、腸内及び吸収時には亜硫酸イオンと亜硫酸水素イオンは、ほぼ等モル濃度の混合物として存在するとしている。

二酸化硫黄及び亜硫酸塩の添加された食品が摂取されると二酸化硫黄のガスが遊離されることが報告されている。しかし、二酸化硫黄のガスは水に溶けやすいので、EFSA(2016)は、このガスは胃では亜硫酸水素イオンに、幽門通過後は腸管内pHの上昇に伴い亜硫酸イオンに相互変換されるとしている。(参照23)

② 吸収、排泄(マウス、ラット、サル)(Gibson 及び Strong (1973); JECFA (1987) で引用)

アルビノラット(系統・性別不明、各群 3 匹)、アルビノマウス(系統・性別不明、各群 $6\sim8$ 匹)及びアカゲザル(雄 1 匹、雌 5 匹)に、 $[^{35}S]$ 亜硫酸ナトリウム含有亜硫酸水素ナトリウム溶液を 50 mg/kg(二酸化硫黄として)の用量で経口投与する試験が実施されている。その結果、ラット及びマウスにおいて、投与した ^{35}S の約 70%が 24 時間以内に尿中に排泄されていることから、Gibson 及び Strong(1973)は、亜硫酸イオンは消化管から素早く吸収されるとしている。なお、サルでは、投与した ^{35}S の約 90%が 24 時間以内に

尿中に排泄されている。(参照38)

③ 吸収、排泄 (ラット) (Bhaghat 及び Lockett (1960); JECFA (1987) で引用)

Wistar ラット(雌、4匹)に、体重 5%相当量の 3.46%ピロ亜硫酸ナトリウム溶液を強制経口投与したところ、4 時間で投与した硫黄の $55.1\pm6.24\%$ (平均生標準誤差)が硫酸イオンとして尿中に排泄された。(参照 39)

Bhaghat 及び Lockett (1960) には明確な吸収量に係る記述はないが、本委員会としては、本知見から、ラットにピロ亜硫酸ナトリウムを投与した場合、少なくとも 4 時間以内に 55.1%以上が吸収されると考えた。

(2)分布

① 分布、代謝(ウサギ)(Gunnison 及び Farruggella (1979); JECFA (1987) で引用)

ニュージーランド白ウサギ(雄、8 匹)に、亜硫酸塩(詳細不明)溶液を 0.9 mmol/kg 体重/時間の用量で耳静脈に $0.6 \sim 6.0$ 時間持続投与することで耳動脈血漿中の亜硫酸イオンの濃度を $400 \sim 650 \text{ } \mu \text{mol/L}$ に維持し、肺及び大動脈における Sスルホン酸量を調べる試験が実施されている。

Gunnison 及び Farruggella(1979)は、Sスルホン酸濃度の指数回帰式での漸近値は、肺において約 900 及び大動脈において約 9,000 nmol/g 乾燥重量(Sスルホン酸として)となるとし、これらの組織における投与 2 及び 4 日後における理論上の Sスルホン酸残存率から、各 Sスルホン酸濃度は指数関数的に減少し、半減期は 2~3 日になると考察している。また、以前の実験において、肝臓、腎臓、心臓、脳、骨格筋、胃、卵巣、精巣、十二指腸、脾臓及び眼(強膜と角膜を除く。)において、検出可能な量の Sスルホン酸は認められなかったとしている。(参照 40)

② 分布、排泄 (イヌ) (Yokoyama ら (1971))

雑種イヌ(性別不明、9 匹)の外科的処置をした上気道に、 22 ± 2 又は 50ppm の[^{35}S]二酸化硫黄を $30\sim60$ 分間吸入ばく露させて血液サンプルを採取し、透析性及び非透析性の血清放射能が測定された。その結果、透析性の ^{35}S の割合は、血清中 ^{35}S 濃度の全範囲にわたって基本的に一定で平均 $64.4\pm2.3\%$ であった。また、2 匹の血液サンプルの非透析性画分を電気泳動し、 ^{35}S の分布を調べたところ、測定された ^{35}S のうち 41%及び 38%が α -グロブリン 画分、18%及び 20%がアルブミン画分に分布していた。(参照 41)

③ 参考資料

以下の a. 及び b. は、肺からの吸入投与の特徴を示した知見であるが、 食品に使用されている「亜硫酸塩等」及び「亜硫酸水素アンモニウム水」は、 摂取時及び摂取後に一部が二酸化硫黄として遊離し、これが吸入され、肺か ら吸収される可能性があることから、参考資料とした。

a. 分布、代謝 (ラット) (Gause 及び Barker (1978); JECFA (1987) で引用) SD ラット (雄、各群 8 匹) に、表 7 に示されている濃度の[35S]二酸化硫 黄を 7 日間吸入ばく露させ、ばく露終了から 0、96、144 及び 192 時間の回 復期間後にそれぞれ 2 匹ずつと殺し、鼻粘液の試料を電気泳動にかけて PAS 染色によって、糖タンパク質の変性を調べる試験が実施されている。

表 7 用量設定

[35S]二酸化硫黄濃度(ppm)	0 (対照群)	5	20
-------------------	---------	---	----

その結果、5ppm 及び 20ppm 群では泳動速度の遅い酸性画分に対照群では見られないバンドが認められた。

また、SD ラット(雄、4 匹)に 5ppm の $[^{35}S]$ 二酸化硫黄を 30 分、1 時間、2 時間及び 4 時間吸入ばく露させ、 ^{35}S の分布を調べる試験が実施されている。

その結果、ばく露 30 分以内に、吸入された 35 S の約 90%が鼻粘液に、また約 10%が血漿又は血清中に認められた。ばく露 $1\sim4$ 時間後の鼻粘液中と血清中の 35 S 濃度の比率は、約 3:1 であった。

Gause 及び Barker (1978) は、二酸化硫黄によりタンパク分子間が架橋された大きな複合体を形成することは、ヒトにおいて、二酸化硫黄の吸入により見られた鼻粘液の流速低下につながることを支持し得るとしている。また、粘液の生理機能には、糖タンパク質の分子間架橋が必要と考えられるが、その形成は、限定的かつ制御されたものだとしている。(参照 42)

b. 分布(ウサギ)(Gunnison ら(1981); JECFA(1987)で引用)

ニュージーランド白ウサギ(雄、各群 $6\sim11$ 匹)に、3ppm の二酸化硫黄を含む空気を 0、3 及び 24 時間又は 10ppm の二酸化硫黄を含む空気を 0、1、3、10、24、48 及び 72 時間吸入ばく露させ、気管壁、肺及び大動脈のS-スルホン酸量を調べる試験が実施されている。

その結果、3ppm 群における気管壁の Sスルホン酸濃度は、ばく露 3 及び 24 時間後にそれぞれ 45 及び 61 nmol/g 乾燥重量を示し、両者の間に有意差はなかった(平均 53 nmol/g 乾燥重量)。10ppm 群における気管壁のSスルホン酸濃度は、ばく露 3 時間後に平均 107 nmol/g 乾燥重量となり、

 $3\sim24$ 時間後までほぼ一定値を示したが、48 及び 72 時間後にはそれぞれ平均 152 及び 163 nmol/g 乾燥重量に増加した。10ppm 群におけるばく露 3 時間後の血漿 Sスルホン酸濃度は、平均 9 nmol/mL 24 であり、24 時間後の血漿 Sスルホン酸濃度は、約 30 nmol/mL であった。また、大動脈では外因性の Sスルホン酸が認められず、後肺葉の遠隔領域では痕跡程度のみが検出された。

Gunnison (1981) らは、これらの結果は二酸化硫黄が肺で代謝されることを示唆しており、肺と心臓は例外の可能性があるが、吸入部位から遠隔組織に二酸化硫黄が輸送される根拠はないとしている。(参照 43)

(3)代謝

① 代謝酵素 (Gunnison (1981)、Gunnison 及び Palmes (1978))

哺乳類における二酸化硫黄及び亜硫酸塩の主な代謝経路は、硫酸への酵素的酸化である。この反応を触媒する亜硫酸オキシダーゼ(SOX)は、哺乳類の肝臓に高濃度で、また、その他の多くの組織にも低濃度で存在しており、ミトコンドリアの膜間スペースに局在するとされている。

二酸化硫黄及び亜硫酸塩を全身投与すると、次の反応で示されるように、 ジスルフィド結合の切断により血漿 S-スルホン酸化合物 (R-S- SO_3) が形成 されると考えられている。

$$R-S-S-R + SO_3^2 \rightleftharpoons R-S-SO_3^- + RS^-$$

SOX 活性を比較した結果、ラットではウサギと比較して約 3 倍、サルと比較して約 5 倍の活性であったこと、また、ラット肝臓ではヒトと比較して約 $10\sim20$ 倍の活性が示されたとされている。また、サルと比較してラットでは SOX 活性が高いが、ラットでは一貫して血清中に低濃度の Sスルホン酸が検出された一方で、サルでは内因性の Sスルホン酸が検出されなかったとされている。(参照 44、45)

代謝酵素(EFSA(2016))(再掲(1)①)

EFSA (2016) は、亜硫酸イオンは吸収された後、硫酸イオンに変換されるが、この反応を触媒するのは SOX であり、末端回腸における SOX の存在及びその肝臓における活性から、亜硫酸イオンがかなりの初回通過効果を受けることが示唆されたが、それがどの程度であるかは不明であるとしている。(参照 23)

また、摂取された硫酸塩や亜硫酸塩を含む硫黄酸化物の一部は、腸管内の

29

²⁴ 原著に基づき 70 mg 血漿タンパク質を血漿 1 mL 相当とした。

硫酸塩還元菌により硫化水素に代謝される(参照23)。ただし、EFSA(2016)は、腸管内での代謝経路が二酸化硫黄及び亜硫酸塩の代謝全体にどの程度寄与しているかは不明であるとしている。(参照23)

③ 代謝、排泄(ウサギ、サル、ラット)(Gunnison ら(1977); EFSA(2022)で引用)

Wistar ラット(雄、5 匹)、ニュージーランド白ウサギ(雄、4 匹)及びアカゲザル(雌、3 匹)にカニュレーション処置を行い、各動物種にそれぞれ亜硫酸塩(詳細不明)を $0.50\sim1.18$ mmol/kg、 $0.14\sim0.61$ mmol/kg 及び $0.13\sim0.42$ mmol/kg の用量で急速静脈内投与し、血漿中及び尿中の亜硫酸イオンの濃度を測定する試験が実施されている 25 。

尿中への亜硫酸イオンの排泄については、2匹のラットに対しそれぞれ0.57 mmol/kg 及び0.97 mmol/kg の亜硫酸塩を注射したところ、それぞれ投与量の8.3%及び8.5%が未変化体の亜硫酸イオンとして尿中に排泄された。

血漿中の亜硫酸イオンの濃度は2つの指数関数の和で示されていたため2コンパートメントオープンシステムモデルによって解析し、その結果、亜硫酸イオンのクリアランスは、各動物種でそれぞれ $49\sim110$ mL/min/kg、 $12\sim44$ mL/min/kg 及び $11\sim23$ mL/min/kg であり、ラット、ウサギ、アカゲザルの順に大きく、相対比率は1.00:0.34:0.20 であった。

ラットにおいて静脈内投与した亜硫酸イオンのクリアランスは $76.3 \pm 13.4 \, \text{ml/min/kg}$ 体重 26 であり、肝臓への血流量 $104.3 \pm 17.1 \, \text{mL/min/kg}$ 体重 (参照 46) を当てはめると、肝臓における取り込み率は 0.73 となり、初回通過効果で少なくとも 73%が消失する。したがって経口投与した亜硫酸塩の 27%が循環血に達する。(参照 47)

Gunnison ら (1977) は、ウサギ及びアカゲザルの亜硫酸イオンのクリアランスは、主に硫酸イオンへの代謝によって起こり、投与量の約 10%以下が未変化体として尿中に排泄され、ラットにおいても同様に、投与した亜硫酸塩の少量が未変化体として排泄されることをこれまでに報告している。

また、これらの動物種の肝臓、腎臓及び心臓の組織中 SOX 比活性を測定する試験が実施され、表 8 の結果が得られた。

表 8 組織中 SOX 比活性

動物種	酵素比活性注1)			
	肝臓	腎臓	心臓	

²⁵ アカゲザルの 1 例を除き、いずれも同一個体に無麻酔状態で 3 回以上の亜硫酸塩の急速静脈内投与並びに血 漿中及び尿中の亜硫酸イオンの濃度測定を行った。

²⁶ EFSA (2022) が原著から算出した平均値 (n = 5)。(参照 47)

ラット ^{注2)}	5.45 ± 0.6	3.50 ± 0.42	1.38 ± 0.24
アカゲザル ^{注2)}	1.42 ± 0.61	0.55 ± 0.18	0.09 ± 0.03
ウサギ ^{注2)}	0.36 ± 0.05	0.13 ± 0.04	0.24 ± 0.05

平均値±標準偏差

- 注1) 酵素単位 1 U = 0.1 OD/min、酵素比活性は U/mg protein と定義しており、本実験における亜硫酸イオンの酸化速度は $168~U=1~\mu mol~SO_3^2$ oxidized/min に相当するとしている。
- 注2)分析した臓器数はラットで10臓器、アカゲザルで8~18臓器、ウサギで11~12臓器であった。

ラット、ウサギ、アカゲザルの、主要な代謝組織中の比活性から推計した体全体における亜硫酸イオンの酸化速度 27 は、それぞれ $140\pm31~\mu mol~SO_3^{2-}/min/kg$ 、 $6.6\pm1.0~\mu mol~SO_3^{2-}/min/kg$ 及び $16.4\pm3.3~\mu mol~SO_3^{2-}/min/kg$ であり、SOX 活性は、ラット、アカゲザル、ウサギの順に大きく、相対比率はそれぞれ 1.00:0.12:0.05 となった。この結果は、in~vivo試験の亜硫酸イオンのクリアランスの結果と比較して、アカゲザルとウサギの順番が逆転する結果となった。

Gunnison ら(1977)は、*in vivo* 試験の亜硫酸イオンのクリアランスと *in vitro* 酵素活性におけるウサギとアカゲザルの順番の逆転は、SOX の絶対量以外の要因が酵素の機能に重要な役割を果たすことを示唆するとしている。(参照 48)

④ 代謝(ラット、サル)(Gunnison 及び Palmes (1978); JECFA (1987)で引用)(再掲①)

SD ラット(雄、11 匹)に、亜硫酸塩(詳細不明)を平均 2.8 mmol/kg 体 重/日の用量で 10 日間経口投与し、投与前後で血漿中の Sスルホン酸濃度を 測定する試験が実施されている。その結果、投与前の Sスルホン酸濃度は平均 8 nmol/mL であったが、投与後は平均 13 nmol/mL となった。

上述の SD ラット(雄、11 匹)に、亜硫酸塩(詳細不明)を 3.2 及び 9.9 mmol/kg 体重/日の用量でそれぞれ 5 日間腹腔内投与し、血漿中の Sスルホン酸濃度を測定する試験が実施されている。その結果、3.2 mmol/kg 体重/日を投与する実験では、投与前は平均 10 nmol/mL であったが、投与後は平均 24 nmol/mL を示した。また、9.9 mmol/kg 体重/日を投与する実験では、投与前は平均 4 nmol/mL であったが、投与後は平均 34 nmol/mL となった。

別の SD ラット(雄、3 匹)に、 $[^{35}S]$ 亜硫酸塩(詳細不明)水溶液を 9.9 mmol/kg 体重/日の用量で 5 日間腹腔内投与し、そのうちの 2 匹の血漿タンパク Sスルホン酸クリアランスを調べたところ、半減期は 3.9 及び 3.5 日であった。

²⁷ 平均値±標準偏差。亜硫酸塩の主要な代謝組織は、肝臓、腎臓及び心臓であると仮定して算出している。

また、アカゲザル(雌、5匹)に、亜硫酸塩(詳細不明)を平均 $1.64\sim2.74$ mmol/kg 体重/日の用量で 11 日間経口投与し、投与前と投与開始 3、6、9 及び 11 日後の血漿中の亜硫酸イオン及び S スルホン酸濃度を測定する試験が実施されている。その結果、投与前はそれぞれ 3 nmol/L(検出限界値)未満及び 0 nmol/L であったが、投与開始 11 日後にはそれぞれ 3 nmol/L (検出限界値)未満~32 nmol/L 及び $30\sim86$ nmol/L を示した。

上述のアカゲザル(雌、5 匹)の Sスルホン酸クリアランスを調べたところ、各個体の半減期はそれぞれ 6、8、13、36 及び 83 日であった。また、別のアカゲザル(雌、1 匹)に $[^{35}S]$ 亜硫酸塩含有餌を、平均 1.31 mmol/kg 体重/日で 5 日間、続いて平均 1.93 mmol/kg 体重/日で 6 日間の合計 11 日間摂取させ、Sスルホン酸クリアランスを調べたところ、半減期は $6\sim13$ 日であった。Gunnison 及び Palmes(1978)は、アカゲザルの Sスルホン酸クリアラン

Gunnison 及び Palmes (1978) は、アカゲザルの S-スルホン酸クリアランスの半減期のうち、36 及び 83 日については、他の 3 匹の値($6\sim13$ 日)と大きく異なることから、実験上のアーチファクトであるとしており、他の 3 匹の値($6\sim13$ 日)は、 $[^{35}S]$ 亜硫酸イオンを用いた試験の結果と傾向が一致するとしている。(参照 45)

⑤ 代謝(ラット)(Wever (1985); JECFA (1987) で引用)

SD ラット(雄、2 匹)に、亜硫酸ナトリウム溶液(亜硫酸ナトリウムとして $100 \, \mathrm{mg/kg}$ 体重、二酸化硫黄として $50 \, \mathrm{mg/kg}$ 体重)を十二指腸内投与し、挿入したカニューレから門脈血又は大静脈血を採取して、血漿中の遊離型の亜硫酸及び S スルホン酸の濃度を測定する試験が実施されている。

その結果、門脈血漿中の亜硫酸イオン濃度は、投与後数分以内に増加し、10分後に $10\sim15$ nmol/mL の頂値を示して、その後減少した。また、門脈血漿中のSスルホン酸濃度は、10分後に亜硫酸イオン濃度の $20\sim25$ %となり、120分後までほぼ一定の濃度を保っていた。一方、大静脈血漿中では、亜硫酸イオンは検出されず、Sスルホン酸濃度は、門脈血漿中より低いものの投与10分後まで増加して、60分後までほぼ同じ濃度を保ち、その後減少した。

また、SD ラット(雌雄、各群 3 匹)に、亜硫酸ナトリウム溶液(亜硫酸ナトリウムとして 100 mg/kg 体重、二酸化硫黄として 50 mg/kg 体重)を十二指腸内投与し、10、20 及び 30 分後に門脈血及び大静脈血を同じ動物から採取し、血漿中の亜硫酸イオン及び S スルホン酸濃度を測定する試験が実施されている。

その結果、門脈血漿中の亜硫酸イオン濃度は時間依存的に増加したが、大静脈血漿中ではそのような増加は認められなかった。また、Sスルホン酸濃度は、大静脈血漿中より門脈血漿中で有意に高かった。

Wever(1985)は、門脈血漿中で検出された亜硫酸イオンは、肝臓におけ

る酸化経路により代謝されること及び Sスルホン酸が肝臓において一部代謝されることと推測している。また、ラットに食餌から摂取される最大量以上の亜硫酸塩を十二指腸内投与した場合、門脈血漿中に亜硫酸イオンが検出されるが、速やかに Sスルホン酸となるか酸化されると結論付けている。(参照49)

⑥ 代謝(ラット)(Sunら(1989); JECFA(1999)で引用)

SD ラット(雄、匹数不明)から摘出した肝臓及び肝細胞を用いて、亜硫酸塩の代謝を調べる試験が実施されている。

その結果、 10^6 細胞/mL の単離肝細胞に 1 mmol/L の亜硫酸イオンを添加した場合、亜硫酸イオンは $35\sim40~\mu$ mol/L/分/ 10^6 細胞の反応速度で、直線的に硫酸イオンに変換された。この反応の初期速度は、 $200~\mu$ mol/L $\sim2~\mu$ mmol/L の亜硫酸イオンを添加した場合においても同様であった。また、摘出肝臓を $1~\mu$ mmol/L の亜硫酸イオンで灌流したところ、 $3~\mu$ 分間の灌流で約 98%の亜硫酸イオンが肝臓に取り込まれ、緩衝液の再灌流により、残留した亜硫酸イオンは $60~\mu$ 0 分後まで経時的に減少した。変換された硫酸イオンの濃度は灌流 $5~\mu$ 0 分後に $930~\mu$ mol/L となったが、このことは灌流後 $30~\mu$ 0 分以内にほぼ全ての亜硫酸イオンが硫酸イオンに変換されたことを示している。(参照 50)

⑦ 代謝(ウサギ、サル)(Gunnison 及び Palmes (1976))

ニュージーランド白ウサギ(雄、2 匹)に、[35S] 亜硫酸ナトリウムを約 0.6 mmol/kg(亜硫酸塩として)の用量で耳静脈内投与し、血漿中亜硫酸イオン 濃度を残差法により分析したところ、その時間的推移は 2 コンパートメント オープンシステムモデルに合致することが示唆された。また、アカゲザル(雌、1 匹)においても、同様の結果が得られた。

ニュージーランド白ウサギ(雄、3匹)に、[35S]亜硫酸ナトリウムを約0.15、0.30 及び 0.60 mmol/kg(亜硫酸塩として)の用量で耳静脈内投与し、2 コンパートメントオープンシステムモデルに基づき、血漿中亜硫酸イオン濃度の経時的推移を分析したところ、消失速度定数及びクリアランスは投与量に逆相関し、クリアランス及び投与量の直線及び指数関数との相関はほぼ同程度であった。

Gunnison 及び Palmes (1976) は、硫酸により SOX が阻害されることが 知られているので、この逆相関関係は、生成物による SOX の阻害が原因かも しれないとしている。

ニュージーランド白ウサギ (雄、3 匹) に、[35S]亜硫酸ナトリウムを約 0.6 mmol/kg (亜硫酸塩として) の用量で耳静脈内投与し、投与後の血漿中亜硫

酸イオン濃度を測定し、投与における 0 次反応は定常状態における状態を示すことを前提として、亜硫酸イオンのクリアランスを推計する試験が実施されている。

また、ニュージーランド白ウサギ(雄、1匹)に、[35S] 亜硫酸ナトリウムを 0.61 mmol/kg(亜硫酸塩として)の用量で耳静脈内投与し、その 12 分後から 23 分後にかけて[35S] 亜硫酸ナトリウムを 37.1 μ mol/min の速度で耳静脈内に 持続注入し、定常状態における血漿中亜硫酸イオン濃度から、クリアランス を測定する試験が実施されている。

それらの試験から得られた値を比較した結果、亜硫酸イオンのクリアランスの推計値と測定値との間に大きな差は認められなかった。

これらの試験成績と、アカゲザル 1 匹を用いた予備的な実験の結果から、Gunnison 及び Palmes (1976) は、亜硫酸イオンの分布と消失のパターンはアカゲザルとウサギで類似しているが、排泄の速度が異なることが示唆されているとし、亜硫酸イオンとしての排泄は総クリアランスのごく一部であり、亜硫酸イオンの主な代謝は硫酸イオンへの酸化であることから、亜硫酸イオンのクリアランスは組織の SOX に直接依存すると考察している。

ニュージーランド白ウサギ(雄、1 匹)に、 $[^{35}S]$ 硫酸ナトリウムを 0.6 mmol/kg(硫酸塩として)の用量で耳静脈内投与し、血漿中硫酸イオン濃度を残差法により分析したところ、その時間的推移は 4 コンパートメントモデルに合致した。

また、同一のウサギに、[35S]亜硫酸ナトリウムを 0.6 mmol/kg(亜硫酸塩として)の用量で耳静脈内投与し、同様に分析したところ、硫酸ナトリウム投与時と比較して、亜硫酸ナトリウム投与時には、消失速度定数が低下した。

ニュージーランド白ウサギ(雄、3 匹)に、 $[^{35}S]$ 硫酸ナトリウムを0.3、0.6 及び1.2 mmol/kg(硫酸塩として)の用量で耳静脈内投与し、4 コンパートメントモデルに基づき、血漿中硫酸イオン濃度の経時的推移を分析したところ、速度定数に用量依存性は見られなかった。

Gunnison 及び Palmes (1976) は、亜硫酸イオンから形成された硫酸イオンは、消化管から血漿中へ吸収されるのと同様に、セントラルコンパートメント ²⁸に移行するとしている。また、血漿中の硫酸イオンの生成は、投与された亜硫酸塩の定常状態後の亜硫酸イオンの消失より相当遅れていることから、亜硫酸塩投与により生成した硫酸イオンは、即時に血漿には到達しないとしている。(参照 51)

⑧ 代謝(ヒト)(Gunnison 及び Palmes (1974); JECFA (1987)で引用)

_

²⁸ 原著において、「血漿及び血漿と瞬時に平衡に達する組織」と定義されている。

健康成人男性を対象として、正常な肺機能の非喫煙者 (12 名 ²⁹) を表 9 の 濃度の二酸化硫黄を含む大気に 120 時間、ヘビースモーカー³⁰ (7名、平均 34 歳) を同濃度で 96 時間ばく露する試験が行われている。また、正常な肺機能の非喫煙者 (3 名) を 3.0 及び 6.0ppm の濃度で 48 時間、ヘビースモーカー (2 名) を 4.2ppm の濃度でばく露する試験が行われている。

表 9 用量設定

二酸化硫黄濃度(ppm)	0 (対照群)	0.3	1.0	3.0
--------------	---------	-----	-----	-----

その結果、非喫煙者と喫煙者に関係なく、血漿中 Sスルホン酸濃度は、ばく露室内の二酸化硫黄濃度に有意な相関があり、喫煙者と非喫煙者のデータを合わせて得た回帰直線の傾きから、大気中の二酸化硫黄濃度が 1ppm 増加するごとに血漿中 Sスルホン酸量が 1.1 ± 0.16 nmol/mL 増加すると推測された。(参照 52)

⑨ 代謝(ヒト)(Constantinら(1994); EFSA(2016)にて引用)

ヒト多形核白血球に亜硫酸ナトリウムを添加したところ、有意に酸素の取り込みが増加した。また、活性化していないヒト多形核白血球に亜硫酸ナトリウムを添加した試料において、三酸化硫黄ラジカルが認められたが、ホルボールミリステートアセテート (PMA) で活性化したヒト多形核白血球に亜硫酸ナトリウムを添加した試料においては、三酸化硫黄ラジカルに加えて5,5-ジメチル-1-ピロリン-1-オキシド (DMPO) ヒドロキシル付加物が認められた。

Constantin ら (1994) は、ヒト多形核白血球には亜硫酸イオンから硫酸イオンへの酸化経路が存在し、SOX が触媒する主要な経路のほか、非酵素的に三酸化硫黄ラジカルの中間体形成を伴って酸化される経路があることが示唆されたとしている。(参照 53)

⑩ 代謝(ヒト)(Constantin ら(1996); EFSA(2016)にて引用)

若い健常者(平均25歳、性別及び人数不明)、高齢の健常者(平均64歳、性別及び人数不明)、100歳以上の健常者(性別不明、3名)及びダウン症候群患者(年齢及び性別不明、3名)から採取した多形核白血球において、亜硫酸塩を用いて、亜硫酸イオンの酸化速度を調べる試験が行われている。その結果、若い健常者及び高齢の健常者においては、SOX活性は三酸化硫黄ラジ

²⁹ 正常な肺機能の非喫煙者群は13名(平均22歳)で構成されていたが、1名を除く12名がばく露試験に参加した。

³⁰ Gunnison 及び Palmes (1974) において、1 日当たり 20~60 本のタバコを吸う人とされている。

カルの生成速度及び硫酸への酸化速度と相関していた。一方、100 歳以上の 健常者及びダウン症候群患者においては、硫酸への酸化速度が遅く、三酸化 硫黄ラジカルの生成が増大していた。

Constantin (1996) らは、硫酸イオンの形成は、SOX 依存性経路と、中間体として三酸化硫黄ラジカルを形成するラジカル活性化経路が存在するとしている。(参照 54)

(4) 排泄

① 排泄(マウス、ラット、サル)(Gibson及びStrong (1973); JECFA (1987)で引用)(再掲(1)②)

アルビノラット(系統・性別不明、各群 3 匹)、アルビノマウス(系統・性別不明、各群 $6\sim8$ 匹)及びアカゲザル(雄 1 匹、雌 5 匹)に、[35 S] 亜硫酸ナトリウム含有亜硫酸水素ナトリウム溶液を、二酸化硫黄として 50 mg/kg の用量で経口投与する試験が実施されている。その結果、尿、糞便及び屠体中の 35 S の回収率は、表 10 のとおりであった。

表 10 尿、糞便及び屠体中の 35S 回収率

	投与後日数(日)	尿中 (%)	糞便中 (%)	屠体中(%)
ラット	1	74~79	4~17	9~21
	2	75~84	13~18	4~ 7
	7	未実施	未実施	2
	14	1 个 天 旭	木	1
マウス	1	78.7	15.6	3.1
	2	80.8	14.8	1.8
	7	+ 12+5	未実施	0.83
	14	未実施	木美旭 	0.36
サル ^注	1	94.9	1.8	
	2	98.1	4.0	
	3	99.2	4.4	未実施
	4	99.8	4.6	
	5	100.5	4.7	

注)原著では、サルの結果のみ累積ではなく 1 日ごとの回収率が示されているが、表 10 では累積の回収率で示している。

また、アルビノラット(系統・性別・匹数不明)に 0、50 又は 200 mg/kg の二酸化硫黄を 5 日間、アルビノラット(系統不明、雌雄、各群 6 匹)に 0、50 又は 200 mg/kg の二酸化硫黄を 30 日間及びアルビノラット(系統・性別

不明、2 匹)に 400 mg/kg の二酸化硫黄を単回、亜硫酸水素ナトリウム溶液 として経口投与し、尿中の亜硫酸イオンを測定する試験が実施されている。 その結果、いずれの試験においても、未変化体の亜硫酸イオンの排泄は認められなかった。

これらの結果から、Gibson 及び Strong (1973) は、投与された二酸化硫 黄及び亜硫酸塩を酸化する機能は飽和しなかったとしている。(参照 38)

排泄(ヒト)(Savicら(1987))

二酸化硫黄を使用している工場において、二酸化硫黄に職業上ばく露している勤務者(ばく露群、性別不明)56名(冬期)及び38名(夏期)並びにばく露していない勤務者(対照群、性別不明)39名を対象にして、尿中の総硫酸イオン濃度及び有機硫酸イオン濃度を調べる試験が実施され、表11の結果が得られた。

表 11 尿中総硫酸イオン濃度及び尿中有機硫酸イオン濃度

	空気中の二酸	尿中総硫酸イ	オン濃度	尿中有機硫酸イオン濃度		
	化硫黄濃度		測定結果	被験者数測定結身		
	(mg/m ³)	(名)	$(\mu mol/L)$	(名)	(µmol/L)	
対照群	_	39	16.7±5.3	39	1.8±1.5	
ばく露群	45.7±12.4	56	21.2±7.9	47	4.1±3.8	
(冬期)						
ばく露群	0.2±0	38	19.3±7.5	36	3.7±1.8	
(夏期)						

平均±標準偏差

空気中の二酸化硫黄濃度は、冬期には $17.1\sim149.4~\text{mg/m}^3$ 、夏期には $0\sim0.75~\text{mg/m}^3$ であった。また、ばく露群の尿中総硫酸イオン濃度及び尿中有機硫酸イオン濃度は、いずれも対照群と比較し有意に高かった。

Savic ら (1987) は、空気中の二酸化硫黄濃度が高いと尿中硫酸イオン濃度が高くなるとしている。(参照 55)

(5) 体内動態のまとめ

本委員会は、次のように考えた。

「亜硫酸塩等」及び「亜硫酸水素アンモニウム水」の添加された食品を摂取 すると二酸化硫黄のガスが遊離されるが、二酸化硫黄のガスは消化液に溶けや すい。二酸化硫黄、亜硫酸水素イオン及び亜硫酸イオンは連続した平衡状態に あり、胃内の低いpHでは二酸化硫黄が優勢であり、幽門通過後は腸管内pHの上昇に伴い亜硫酸イオンが優勢となる。吸収された亜硫酸イオンは、肝臓のSOX などによって硫酸イオンに酸化されるか、三酸化硫黄ラジカルの形成を通じて硫酸イオンの形成に至る経路により代謝される。ラットでは、ウサギ又はサルと比較してSOX活性が高く、ヒトと比較して約 $10\sim20$ 倍のSOX活性が肝臓で示されている。また、ラットでは、ウサギ又はサルと比較して亜硫酸塩のクリアランスが大きく、約 $3\sim5$ 6の亜硫酸イオンのクリアランスが示されている。亜硫酸塩の摂取後に検出されたSスルホン酸の半減期は短く、蓄積性は低い。さらに、経口投与された二酸化硫黄及び亜硫酸塩は、その大半が硫酸イオンとして速やかに尿中や糞便中に排泄される。

2. 毒性

(1)遺伝毒性

添加物評価書「亜硫酸水素アンモニウム水」において、亜硫酸ナトリウム、 二酸化硫黄、ピロ亜硫酸カリウム、ピロ亜硫酸ナトリウム及び亜硫酸水素ナト リウムを被験物質とした遺伝毒性試験に係る以下の知見が検討されている(参 照 4)。同評価書以降の新たな知見は提出されていない。

① 試験結果一覧

表 12 DNA 鎖切断試験の成績 (in vitro)

指標	試験種類	試験対象	被験物質	用量等	試験結果	参照文献
DNA	DNA 鎖切断	シリアンハムスタ	亜硫酸水	最高用量 50	陰性	Doniger 5
損傷	試験	一胎児細胞	素ナトリ	mM、15 分		(1982)(参照
			ウム	間処理		56)

表 13 復帰突然変異試験及び遺伝子突然変異試験の成績 (in vitro)

指標	試験 種類	試験対象	被験物質	用量等	試験結果	参照文献
遺伝子突然変異	復然異談談	細菌(<i>Escherichia coli</i> K12(λファージ N14-4 による c 遺伝子変異 株)	亜素ウ硫ナム亜ト=3 酸ト(水リピ酸ウ: 水リ亜素ウロナム)	3 M/plate (pH5.6) ^注 (0、90、180 分处理	陽性(90 分後以降)	Hayatsu 及び Miura(1970) (参照 57)
		細菌 (<i>E. coli</i> K12、 15)	亜硫酸水素ナトリ	1 M/plate (pH5.2) ^注	陽性(代謝活性 化系非存在下:	Mukai ら (1970)(参照

414	234 €				<u> </u>	<u> </u>
指標	試験 種類	試験対象	被験物質	用量等	試験結果	参照文献
			ウム	1)	15 株) 注2)	58)
					陰性(代謝活性	
					化系非存在下:	
					K12 株)	
		細菌(Salmonella	亜硫酸ナ		陰性(代謝活性	Litton
		typhimurium	トリウム	e (pH7.4) 注	化系の有無にか	Bionetics, Inc.
		TA1535、TA1537、		1)	かわらず)	(1975)(参照
		TA1538)				59)
		細菌(S. typhimurium	亜硫酸水	最高用量	陰性(代謝活性	SRI
		TA98、TA100、	素ナトリ	10 mg/plate	化系の有無にか	International
		TA1535、TA1537、	ウム	(pH7.0)	かわらず)	(1978a)(参照
		TA1538, E. coli WP2				60)
		uvrA)				
		細菌(<i>S. typhimurium</i>	ピロ亜硫		陰性(代謝活性	SRI
		TA98、TA100、	酸ナトリ	10 mg/plate	化系の有無にか	International
		TA1535、TA1537、	ウム	(pH7.0)	かわらず)	(1978b) (参照
		TA1538, E. coli WP2				61)
		uvrA)		0 4 3 5 / 1	PA 14 / //\ =\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2.5.11
		細菌(E. coli WP2、	亜硫酸水	0.1 M/plate 注1)	陰性(代謝活性	Mallon and
		WP2s uvrA、WP5	素ナトリ		化系非存在下)	Rossman (1981) ; EFSA
		lexA, WP6 polA,	ウム			(1981), EFSA (2016) にて引
		WP10 recA)				用(参照 62、
						23)
		細菌 (S. typhimurium	無水亜硫	最高用量	陰性(代謝活性	Ishidate 5
		TA92、TA94、TA98、	酸ナトリ	5 mg/plate	化系の有無にか	(1984) ; EFSA
		TA100, TA1535,	ウム	o mg. prace	かわらず)	(2016) にて引
		TA1537)				用 (参照 63、
		,				23)
		細菌 (S. typhimurium	ピロ亜硫	最高用量	陰性(代謝活性	Ishidate 5
		TA92, TA94, TA98,	酸カリウ	3 mg/plate	化系の有無にか	(1984) ; EFSA
		TA100、TA1535、	4		かわらず)	(2016) にて引
		TA1537)				用(参照 63、
						23)
遺	復帰	細菌(S. typhimurium	無水亜硫	最高用量	陰性(代謝活性	Ishidate ら
伝	突然	TA92、TA94、TA98、	酸水素ナ	50 mg/plate	化系の有無にか	(1984)(参照
子	変異	TA100、TA1535、	トリウム		かわらず	63)
突	試験	TA1537)				
然		細菌 (S. typhimurium	亜硫酸水	1 M/plate	陰性(代謝活性	DeGiovanni-
変		hisG46, TA92,	素ナトリ	(pH5.2) 注	化系非存在下:	Donnelly
異		TA1950, TA2410,	ウム(亜	1)	GW19)	(1985); EFSA
		TS24 及び GW19)	硫酸水素		陽性(代謝活性	(2016) にて引 田 (参昭 64
			ナトリウ		化系非存在下:	用(参照 64、23)
			ムとピロ		hisG46	20)
			亜硫酸ナトリウム		TA92、	
			の混合		TA1950	
			の混合物)		TA2410、 TS24) ^{注3)}	
		細菌 (S. typhimurium		基 直用基		Dagara Hyr
L		州西 (S. typnimurium	- 世里佩	取同用里	陰性(代謝活性	I agano 火∪

指	試験					
押標	種類	試験対象	被験物質	用量等	試験結果	参照文献
		hisG46 変 異 株 、 hisD6610 変 異 株 、 hisD3052 変 異 株 、 hisC3076 変異株)	酸ナトリウム	33.3 mg/plate (hisD3052 変異株、 hisC3076 変 異株) (pH5.0~ 8.0) 0.02、0.04、	化系非存在下) 陽性(代謝活性	Zeiger (1987); EFSA (2016) にて引 用 (参照 65、 23)
				0.10、0.20、 0.30 M/plate (hisG46 变 異株、 hisD6610 変 異株) (pH4.0~ 5.0)	hisD6610:0.3 M/plate で最大 の変異原性) ^注	
		細菌(S. typhimurium TA98、TA100、 TA1535、TA1537)	亜硫酸ナトリウム	最高用量 5 mg/plate	陰性(代謝活性 化系の有無にか かわらず)	BASF (1989a) (非公表); EFSA (2016) にて引用(参照 23)
		細菌(S. typhimurium TA98、TA100、 TA1535、TA1537)	酸カリウム	最高用量 5 mg/plate	陰性(代謝活性 化系の有無にか かわらず)	BASF(1989c) (非公表); EFSA(2016) にて引用(参照 23)
		細菌(S. typhimurium TA98、TA100、 TA1535、TA1537)	ピロ亜硫 酸ナトリ ウム	最高用量 5 mg/plate	陰性(代謝活性 化系の有無にか かわらず)	BASF(1989b) (非公表); EFSA(2016) にて引用(参照 23)
遺伝子突然変	復帰然変武験	細菌(S. typhimurium TA98、TA100、 TA1535、TA1537、 TA1538、E. coli WP2)	ピロ亜硫 酸ナトリ ウム	最高用量 10 mg/plate (pH7.0)	陰性(代謝活性 化系の有無にか かわらず)	Prival ら (1991)(参照 66)
異		細菌(S. typhimurium TA98、TA100、 TA1535、TA1537、 TA1538、E. coli WP2)	亜硫酸水 素ナトリ ウム	最高用量 10 mg/plate (pH7.0)	陰性(代謝活性 化系の有無にか かわらず)	Prival ら (1991)(参照 66)
	遺伝子突	細菌(<i>E. coli</i> : NR3835、KA797、 NR3956 (<i>ung-</i>)、 NR5040 (<i>dcm-</i>)、	亜硫酸 水素ナ トリウ ム	1 M/plate (pH5.2~ 6.0) ^{注1)} 30 分	陰性	Kunz and Glickman (1983)(参照 67)

+1-1	234€					
指標	試験 種類	試験対象	被験物質	用量等	試験結果	参照文献
	然変	NR3883 (recA))				
	異試	酵母(Saccharomyces	亜硫酸	最高用量	陰性(代謝活性	Litton
		cerevisiae D4)	ナトリ	5.0%	化系の有無にか	Bionetics, Inc.
	験		ウム		かわらず)	(1975)(参照
						59)
		チャイニーズハムスタ	亜硫酸	最高用量	陰性	Mallon and
		一細胞(V79株)	水素ナ	20 mM、15		Rossman
			トリウ	分処理、5		(1981);
			ム	mM、48 時		EFSA (2016)
				間処理注1)		にて引用(参照
			エディナエム	00 M 15	17.A. I.L.	62、23)
		シリアンハムスター胚 mp (CIII mp)	亜硫酸	20 mM、15 分処理、5	陰性	Tsutsui and Barrett
	遺伝	細胞(SHE細胞)	水素ナ トリウ	万処理、5 mM、24 時		(1990);
			トリワ	mw 、24 時 間処理 ^{注1)}		EFSA (2016)
	子突			间处理		にて引用(参照
	然変					68, 23)
	異試	チャイニーズハムスタ	亜硫酸	5, 10	陽性(代謝活性	Meng 及び
		一卵巣細胞 (CHO 細	水素ナ	mM、4 時	系非存在下、5	Zhang
	験	胞) (AS52 株)	トリウ	間処理	mM 以上、用	(1999);
			ム (亜	(pH7.0)	量依存的な増	EFSA (2016)
			硫酸ナ		加) ^{注5)}	にて引用(参照
			トリウ			23, 69)
			ム:亜			
			硫酸水			
			素ナト			
			リウム			
			=3:			
			1)		7A Id. 775 = 17	EDGA (SS:S)
		マウスリンフォーマ細	ピロ亜	最高用量	陰性(代謝活性	EFSA (2016)
		胞(L5178Y 株)	硫酸ナ	1,902	化系の有無にか	
			トリウ	μg/mL	かわらず)	(2010) を引
			ム			用)(参照 23)
遺						
伝						
子						
突						
然						
変						
異						

- 注1) 実施された試験は単用量である。
- 注2) 使用した菌株が経済協力開発機構 (OECD) テストガイドライン 471 の推奨菌株ではない。
- 注3) EFSA (2016) (参照 23) は、推奨菌株ではないことや試験の詳細が不明であること等の点で OECD テストガイドライン 471 に準じていない研究であると指摘している。
- 注4) EFSA (2016) (参照 23) は、使用された菌株が一般的ではないことや陽性対照群が設定されていないこと等を指摘、研究の信頼性は限定的であると指摘している。

注 5) Meng 及び Zhang(1999)は、欠失変異が増加しているのは、亜硫酸水素塩の高用量での細胞毒性により生じた DNA 損傷が関与しているものと推定しており、EFSA(2016)(参照 23)もこれに同意している。

表 14 染色体異常試験の成績 (in vitro)

	20, 11	<u> </u>		· 	Т	
指標	試験 種類	試験対象	被験物質	用量等	試験結果	参照文献
染	染 色	チャイニーズハム	ピロ亜硫酸カリ	最高用量 1	陰性	Abe 及び Sasaki
		スター培養細胞	ウム	mM、26 時間		(1977)(参照
色	体 異	(Don 細胞)		処理		70)
体	常試	チャイニーズハム	ピロ亜硫酸カリ	最高用量	陰性(代謝活	Ishidate 5
異	騇	スター肺繊維芽細	ウム	60 μg/mL、24	性化系非存在	(1984); EFSA
	1000	胞由来培養細胞		及び 48 時間処	下)	(2016 にて引
常		(CHL 細胞)		理		用) (参照 63、
		チャイニーズハム	無水亜硫酸ナト	最高用量	陰性(代謝活	23)
		スター肺繊維芽細	リウム	$500~\mu g/mL$ 、	性化系非存在	
		胞由来培養細胞		24 及び 48 時	下)	
		(CHL 細胞)		間処理		
		チャイニーズハム	無水亜硫酸水素	最高用量 125	陰性(代謝活	Ishidate ら
		スター肺繊維芽細	ナトリウム	μg/mL、24 及	性化系非存在	(1984)(参照
		胞由来培養細胞		び 48 時間処	下)	63)
		(CHL 細胞)		理		
		シリアンハムスタ	亜硫酸水素ナト	最高用量 40	陰性	Popescu and
		一胎児細胞	リウム	mM、6 及び		DiPaolo
				24 時間処理注		(1988) ; EFSA
				1)		(2016) にて引
						用 (参照 71、
						23)
		シリアンハムスタ			陰性	Tsutsui and
		一胚細胞(SHE	リウム	mM、24 及び		Barrett
		細胞)		48 時間処理		(1990) ; EFSA
						(2016) にて引
						用(参照 68、
		7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	TT T+ TA 1. + 1 1	0.4 1 注2)	77 14.	23)
		ヒト末梢血リンパ		· ·	陽性	Bechman and Nordenson
		球(健常者2名、	リウム	48 時間処理		
		性別不明)				(1986)(参照
		ヒト末梢血リンパ		0 005	阻 卅 (0 50	72)
		球(健常者4名、			勝 性 (0.50 mM 以上)	Meng 及び Zhang
				1		(1992)(参照
		男女(比率不明))				73)
		明))	硫酸水素ナトリウム・コンキ	时间处理		
			ウム=3:1) 注 3) (-117.0)			
			³⁾ (pH7.0)			

- 注1) EFSA (2016) (参照 23) は、生理学的限界 10 mM を超える用量で実施された試験であると指摘している。
- 注2) 実施された試験は単用量である。
- 注3) Meng ら (2004) (参照 74)は、吸入された二酸化硫黄が水和され気道で亜硫酸を生成した後、亜硫酸水素塩と亜硫酸塩 (1:3 M/M) を形成するとしている。

表 15 小核試験の成績 (in vitro)

指標	試験 種類	試験対象	被験 物質	用量等	試験結果	参照文献
染	小核	ヒト培養末梢血リ	二酸化	0, 0.1, 0.5,	陽性 (0.5ppm	Uren 5 (2014);
色	試験	ンパ球 (男 2 名・ 女 2 名)	硫黄	1.0ppm 72 時間処理	以上) ^{注1)}	EFSA(2016)にて 引用(参照 75、
体						23)
異		ヒト培養末梢血二	ピロ亜	0, 25, 50,	陽性(24 及び	Yavuz-Kocaman 5
		核リンパ球(健常	硫酸力	100, 200	48 時間処理:	(2008); EFSA
常		者4名、男2名・	リウム	μg/mL	25 μg/mL 以	(2016) にて引用
		女 2 名)		24 及び 48 時間	上) 注2)	(参照 76、23)
				処理		

- 注1) 陽性対照群に代謝活性化が必要な薬剤であるシクロホスファミドを使用しているのにも関わらず、実験 系が非代謝活性化系のため陽性対照としては不適切であると考えられる。また、陰性対照群の背景データ が提示されておらず、試験結果が通常ヒトリンパ球培養で見られる範囲のものか不明である。
- 注2) EFSA (2016) (参照 23) は、被験物質、サイトカラシン B、フィトヘマグルチニンの同時処理という通常用いない方法で試験が行われていると指摘している。

表 16 姉妹染色分体交換試験 (SCE 試験) の成績 (in vitro)

	試験 種類	試験対象	被験物質	用量等	試験結果	参照文献
染	姉妹染	チャイニー	ピロ亜硫酸カリ	最高用量1	陰性	Abe 及び Sasaki
色	色分体	ズハムスタ 一細胞(Don	ウム	mM、 26 時間処理		(1977)(参照 70)
体	交換試	細胞)		20 1 11117		
異	験	チャイニー	亜硫酸水素ナト		陽性 (0.09	MacRae and Stich
常	(SCE	ズハムスタ 一卵巣細胞	リウム	0.09 \ 0.27 \ 0.81 \ 2.4 \ 7.3		(1979); EFSA (2016)にて引用
	試験)	グドストル川区		mM、2及び24		(参照 77、23)
				時間処理		
žħ	姉妹染	ヒト培養末	亜硫酸水素ナト	0.4 mM ^{注1)}	有意な増加	Bechman and
		梢血リンパ 球(2名、性	リウム	48 時間処理		Nordenson(1986) (参照 72)
	色分体	別不明)				(参点 12)
体	交換試	シリアンハ	亜硫酸水素ナト	0, 10, 20,	陽性(10	Popescu and DiPaolo
異	験	ムスター胎	リウム	40 mM、	mM 以上) ^注	(1988) ; EFSA
常	(SCE	児細胞		15 分処理	2)	(2016) にて引用
	試験)	シリアンハ	亜硫酸水素ナト	最高用量	<u>陰性</u>	(参照 71、23) Tsutsui and Barrett
		ムスター胚	リウム	20 mM、		(1990); EFSA
		細胞(SHE		15 分処理		(2016) にて引用
		細胞)		0, 0.5, 2.0,	陽性(0.5	(参照 68、23)
				5.0 mM、24 時		
				間処理	量依存的な増 加)	
		ヒト培養末	亜硫酸水素ナト	0, 0.05,	ル) 陽性(0.05	Meng 及び Zhang
		梢血リンパ	リウム(亜硫酸	0.10, 0.50, 1		

試験 種類	試験対象	被験物質	用量等	試験結果	参照文献
	球(4名、男女比不明)	ナトリウム:亜 硫酸水素ナトリ ウム=3:1) (pH7.0) ^{注3)}	mM、48 時間 処理	量依存的な増加)	
	ヒト末梢血 リンパ球 (男 2 名・ 女 2 名)	二酸化硫黄	0、0.1、0.5、 1.0ppm 72 時間処理	陽性 ^{注4)} (0.5 以上)	Uren ら(2014); EFSA(2016)にて 引用(参照 75、23)

- 注1) 実施された試験は単用量である。
- 注2) EFSA (2016) (参照 23) は、生理学的限界 10 mM を超える用量で実施された試験であると指摘している。
- 注3) Meng ら (2004) (参照 74) は、吸入された二酸化硫黄が水和され気道で亜硫酸を生成した後、亜硫酸水素塩と亜硫酸塩 (1:3 M/M) を形成するとしている。
- 注4) 陽性対照群に代謝活性化が必要な薬剤であるシクロホスファミドを使用しているのにも関わらず、実験 系が非代謝活性化系のため陽性対照としては不適切であると考えられる。また、陰性対照群の背景データ が提示されておらず、試験結果が通常ヒトリンパ球培養で見られる範囲のものか不明である。

表 17 コメットアッセイの成績 (in vivo)

指標	試験種類	試験対象	被験物質	用量等	試験結果	参照文献
DNA 損傷	コメットアッセイ		ピロ亜硫 酸ナトリ ウム	2 g/kg 体 重、1 回強	陽性 ^{注)} (1~2 g/kg 体重: 網状赤血球、 肝臓・骨髄細 胞)	Carvalho ら (2011); EFSA (2016) にて引用 (参照 78、23)

注) 単回投与後短時間 (3~6 時間) のデータがないことから最終投与後 24 時間に DNA 損傷が持続していることを確証できないと考えられる。

表 18 染色体異常試験の成績 (in vivo)

指標	試験 種類	試験対象	被験物質	用量等	試験 結果	参照文献
染	染色	ラット(系統不明、	亜硫酸水	最高用量 150 mg/kg	陰性	Litton Bionetic,
色	体異	匹数不明) (骨髓細胞)	素ナトリ ウム	体重、単回及び5日 間連続経口投与		Inc.(1972)(参照 79)
体	常試	ラット(系統不明、	ピロ亜硫	最高用量 1200 mg/kg	陰性	
異	験	匹数不明) (骨髄細胞)	酸ナトリ ウム	体重、経口投与、投 与後 6、24、48 時間		Institute(1972) (参照 80)
常				後に標本作製		

指標	試験 種類	試験対象	被験物質	用量等	試験 結果	参照文献
		マウス (NMRI、各 群雄 3 匹、雌 3 匹) (骨髄細胞)	ピロ亜硫 酸ナトリ ウム	最高用量 660 mg/kg 体重 ^{注)} 、2 回強制経 口投与(投与間隔 5.5		Renner 及び Wever (1983)(参照 81)
		チャイニーズハムス ター(各群雄3匹、 雌3匹)(骨髄細胞)		時間) 最終投与 30 分後に標 本作製	陰性	
		マウス (Swiss、投与 群 4 匹、対照群 6 匹) (骨髄細胞)	ピロ亜硫 酸ナトリ ウム	最高用量 400 mg/kg 体重、1 回経口投 与 、24 時間後	陰性	Pal 及び Bhunya (1992); EFSA (2016) にて引用 (参照 82、23)

注) 原著において、二酸化硫黄換算と記載されている。

表 19 小核試験の成績 (in vivo)

指標	試験 種類	試験対象	被験物質	用量等	試験結果	参照文献
染	小核	マウス(NMRI、各	ピロ亜硫	最高用量 660	陰性	Renner 及び Wever
色	試験	群雄3匹、雌3	酸ナトリウィ	mg/kg 体重 ^注		(1983)(参照 81)
体		匹)(骨髄細胞) チャイニーズハム	ウム	1 ¹ 、2 回強制経 口投与	陰性	
1/4×		. , ,				
異		スター(各群雄 3		6 時間後(最終		
		匹、雌3匹)(骨髄		投与 5.5 時間		
常		細胞)		後)		
		マウス(CF1、各	ピロ亜硫	0, 0.5, 1, 2	陽性 ^{注2)}	Carvalho 5
		群雌5匹、雄5	酸ナトリ	g/kg 体重、1 回	(2 g/kg 体	(2011); EFSA
		匹) (網状赤血球、	ウム	強制経口投与	重、網状赤血	(2016) にて引用
		骨髓細胞)		24 時間後	球、骨髄細	(参照 78、23)
					胞)	

注1) 原著において、二酸化硫黄換算と記載されている。

注2) EFSA(2016)(参照 23)は、2 g/kg 体重のみでの陽性結果であり、用量依存性がみられておらず、 ギムザ染色法を用いたことから多染性赤血球(PCE)と正染性赤血球(NCE)の判別が困難で、骨髄で の陰性対照群の PCE/NCE の値(1.67 \pm 0.67)が高い値(通常は1近辺)を示していること、対照群の背景データが提示されていないこと等を指摘し、この試験は評価に適していないとしている。

表 20 姉妹染色分体交換試験 (SCE 試験) の成績 (in vivo)

指標	試験種類	試験対象	被験物質	用量等	試験 結果	参照文献
染	姉妹染色	マウス(NMRI、各群雄2	ピロ亜硫酸ナ	最高用量 660	陰性	Renner 及
色	分体交換	匹、雌2匹)(骨髄細胞)	トリウム	mg/kg 体重		び Wever
体	試験	チャイニーズハムスター		注)、1回強制経	陰性	(1983)
異	(SCE	(各群雄2匹、雌2匹)		口投与		(参照 81)
常	試験)	(骨髄細胞)		2 時間後		

注) 原著において、二酸化硫黄換算と記載されている。

表 21 優性致死試験の成績 (in vivo)

指標	試験 種類	試験対象	被験物質	用量等	試験 結果	参照文献
染	優性	SDラット(匹数	亜硫酸水	最高用量 150 mg/kg	陰性	Litton Bionetics, Inc.
色	致死	不明)	素ナトリ ウム	体重、単回及び5日間 連続経口投与		(1972)(参照 79)
体	試験	ラット(系統不	ピロ亜硫	最高用量 1,200 mg/kg	陰性	Stanford Research
異		明、匹数不明)	酸ナトリ	体重、単回経口投与		Institute(1972)(参
			ウム	最高用量 1,200 mg/kg	陰性	照 80)
常				体重、反復経口投与		
		SDラット(雄、	ピロ亜硫	最高用量 1,250 mg/kg	陰性	Stanford Research
		各投与群 20 匹、	酸ナトリ	体重/日、10 週間混餌		Institute(1979)(参
		対照群 40 匹)	ウム	投与		照 83)

② 参考資料

表 22 の試験については、光照射への防御のない実験条件での試験であるものの、陽性の結果が認められたことから、参考資料として記載する。

表 22 染色体異常試験及び姉妹染色分体交換試験(SCE 試験)の成績 (in vitro)

指標	試験 種類	試験対象	被験物 質	用量等	試験結果	参照文献
染色体異	染体常験	ヒト末梢血リ ンパ球(4名 (男2名・女 2名)) ヒト末梢血リ	4	0、75、150、 300 μg/mL 24 及び 48 時間 処理 0、25、50、	陽性(24 及び 48 時間処理:75 μg/mL 以上) 陽性(24 及び 48	Rencuzogullari ら (2001); EFSA (2016) にて引用(参照 84、23) Yavus-Kocaman ら
常		ンパ球(4名 (男女、各群 2 名))	硫酸カリウム	100、200 μg/mL 24 及び 48 時間 処理	時間処理:25 μg/mL 以上)	(2008); EFSA (2016) にて引用 (参照 76、23)
	姉妹 染色 分体	ヒト末梢血リ ンパ球(男 2 名・女 2 名)	ピロ亜 硫酸ナ トリウ ム	0、75、150、 300 µg/mL、 24 及び 48 時間 処理	陽性(24 及び 48 時間処理:75 μg/mL 以上)	Rencuzogullari ら (2001); EFSA(2016) にて引用(参照 84、23)
	交換試験	ヒト末梢血リ ンパ球(男 2 名・女 2 名)	ピロ亜 硫酸カ リウム	0、25、50、 100、200 µg/mL 24 及び 48 時間 処理	陽性(24 及び 48 時間処理: 25~ 200 µg/mL 以上)	Yavuz-Kocaman ら (2008); EFSA(2016) にて引用(参照 76、23)

表23の in vivo 試験については、経口投与以外の投与経路によることから、 参考資料として記載する。

表 23 コメットアッセイ、染色体異常試験、小核試験、姉妹染色分体交換試験 (SCE 試験) 及び優性致死試験の成績 (*in vivo*)

	試験種 類	試験対象	被験物質	用量等	試験結果	参照文献
D N A 損 傷	コメッ	雌6匹、雄6匹) (脳・肺・心臓・肝臓・胃・脾臓・胸腺・腎臓の細胞、骨	トリウ	0、125、250、500 mg/kg 体重、腹腔内 投与、1回/日、7日間 24 時間後	mg/kg 体重	
		マウス(昆明、各群 雌 6 匹、雄 6 匹) (末梢血リンパ球、 脳・肺・肝臓・脾 臓・腎臓・小腸・精 巣の細胞)	黄	- C	以外:14	_
色体異	染色体 異 験 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。	マウス (Swiss、投与 群各 4 匹、対照群 10 匹) (骨髄細胞) マウス (Swiss、投与 群各 4 匹、対照群 10 匹) (骨髄細胞) マウス (Swiss、投与 群 4 匹、対照群 10 匹) (骨髄細胞) マウス (Swiss、投与 群 4 匹、対照群 6 匹) (骨髄細胞)	酸ナトリウム	mg/kg 体重、1 回腹腔内投与、24 時間後 0、400 mg/kg 体重、1 回腹腔内投与、6、24、48 時間後 0、80 mg/kg 体重、5回腹腔内投与(24 時間隔)、120 時間後	陽性(300 mg/kg 体 重以上) 陽性(投与 24 及び 48 時間後)	Pal 及び Bhunya (1992); EFSA (2016)にて引 用(参照 82、 23)
		マウス(昆明、各群 雌 4 匹、雄 4 匹)(骨 髄細胞) ラット(アルビノ、		mg/m ³ 、4 時間/日、7 日間吸入 24 時間後 0、150、300、600	mg/m³以 上) 陽性(300	Meng 及び Zhang(2002); EFSA(2016) にて引用(参照 86、23) Yavus-Kocaman ら(2008)(参照 76)
		チャイニーズハムス ター(各群雄2匹、 雌2匹)(骨髄細胞)		14 /久 〇:44 叶	陰性	
	小核試験	マウス(Swiss、投与 群各 4 匹、対照群 3 匹)(骨髄細胞)	ピロ亜硫 酸ナトリ ウム			Pal 及び Bhynya (1992)(参照 82)

	試験種	試験対象	被験物質	用量等	試験結果	参照文献
標	類	マウス(昆明、各群 雌 5 匹、雄 5 匹)(骨 髄細胞)	二酸化硫		陽性(14	Meng ら (2002); EFSA (2016)にて引 用(参照 87、
		マウス(NMRI、 雄、各群 5 匹)(骨髄 細胞)		0、250、500、1,000 mg/kg 体重、1 回皮 下投与 24 時間後(全群)、 48 時間後(0、1000 mg/kg 群)	陰性	23) BASF(2008) (非公表); EFSA(2016) にて引用(参照 23)
			二酸化硫黄	最高用量 30ppm(約 80 mg/m³)、4 時間/ 日、7 日間吸入ばく 露 24 時間後	陰性	Ziemann ら (2010); EFSA (2016) にて引 用 (参照 88、 23)
染色体		(骨髄細胞) チャイニーズハムス	ピロ亜硫 酸ナトリ ウム	最高用量 50 mg/kg 体重 ^{注)} 、12 回 皮下投与(20 分間 隔) 最終終了後	陰性	Renner 及び Wever(1983) (参照 81)
	優性致死試験	マウス ((101× C3H) F ₁ 、雄) マウス ((101×	亜硫酸ナ トリウム	体重/日、20 回腹腔内 投与(26 日間中) 最高用量 300 mg/kg 体重/日、38 回腹腔内 投与(54 日間中) 最高用量 550 mg/kg	陰性	Generoso ら (1978)(参照 89)
		マウス((101× C3H) F ₁ 、雌)			陰性	

③ 遺伝毒性のまとめ

In vitro 試験においては、亜硫酸水素ナトリウムの細菌を用いた復帰突然変異試験、培養細胞を用いた突然変異試験、染色体異常試験及び SCE 試験の一部で陽性であった。また、ピロ亜硫酸ナトリウムの細菌を用いた復帰突然変異試験、ピロ亜硫酸カリウムの培養細胞を用いた in vitro 小核試験で陽性であった。二酸化硫黄に関しては、in vitro 小核試験及び SCE 試験で陽性の結果が得られている。

亜硫酸水素塩は $in\ vitro$ において DNA のシトシンへの結合を介して脱アミノ化を誘導し、ウラシルへ変換する作用を有することが報告されているが、この反応は pH 中性条件下では不安定であり、復帰突然変異試験でも陰性になるとの報告がある。亜硫酸水素塩は中性条件下で放出する・ SO_3 ラジカルの作用により DNA 鎖を切断することも報告されている。また、亜硫酸水素塩の

遺伝毒性には、二次的に起こる酸化的ストレスによる影響が考えられる。

しかしながら、細菌を用いた復帰突然変異試験の陽性結果はいずれも標準的でない菌株及び試験条件を用いており、信頼性は限定的と考えられた。標準的な菌株を用いた復帰突然変異試験は全て陰性であった。培養細胞を用いた遺伝子突然変異試験の陽性結果は高用量での結果であり、強い細胞毒性によるものと考えられた。なお、EFSA(2016)は、復帰突然変異試験の陽性結果に関して、使用された菌株が一般的ではないことや陽性対照群が設定されていないこと等を指摘しており、*in vitro* 突然変異試験、染色体異常試験の陽性に関しても、培地等の酸性化の影響や試験方法が適切でない可能性を指摘している。

一方、経口投与で実施された $in\ vivo$ 試験では、ピロ亜硫酸ナトリウムに関して小核試験 1 試験及びコメット試験 1 試験で陽性であったが、いずれも高用量($1\sim2\ g/kg$ 体重)での結果であった。なお、コメット試験は OECD テストガイドラインと異なる試験条件であった。EFSA(2016)は、小核試験について、用量依存性がみられず評価に適していないとしている。

本委員会としては、亜硫酸ナトリウム、二酸化硫黄、ピロ亜硫酸カリウム、ピロ亜硫酸ナトリウム及び亜硫酸水素ナトリウムを被験物質とした遺伝毒性試験のうち、in vitro 試験で遺伝毒性を示す結果が一部存在するものの、明らかな遺伝子突然変異誘発性は示唆されず、適切な条件下で試験された in vivo経口投与試験(染色体異常試験、小核試験、優性致死試験及び SCE 試験)で陰性の結果が得られていることから、「亜硫酸塩等」及び「亜硫酸水素アンモニウム水」を食品添加物として通常摂取する場合において、生体にとって特段問題となる遺伝毒性はないと判断した。

(2) 急性毒性

添加物評価書「亜硫酸水素アンモニウム水」において、亜硫酸ナトリウム、 ピロ亜硫酸カリウム、ピロ亜硫酸ナトリウム及び亜硫酸水素ナトリウムを被験 物質とした急性毒性試験に係る表 24 の知見が検討されている(参照 4)。同評価 書以降の新たな知見は提出されていない。

$\equiv 0.4$	4 肿毛	MH =+F EES / ^	二 《王
表 24	志 注册	性試験の	凡艰

動物種	被験物質	LD ₅₀ (mg/kg 体重)		参照文献
(性別)			二酸化硫黄と	
			しての値 ^{注)}	
ラット	亜硫酸ナト	3,160	1,610	EFSA(2016)(参照 23)
(雌雄)	リウム			
ウサギ	亜硫酸ナト	1	$600 \sim 700$	JECFA(1987)及び EFSA(2016)(Rost 及
(不明)	リウム			び Franz(1913)を引用)(参照 90、23)

ラット	亜硫酸水素	雄:1,160	雄:714	BASF(1982b、c)(非公表); EFSA(2016)
(雌雄)	ナトリウム	雌:1,540	雌:948	にて引用(参照23)
ラット	ピロ亜硫酸	3,200	2,160	BASF(1973a)(非公表); EFSA(2016)に
(不明)	ナトリウム			て引用 (参照 23)
ラット	ピロ亜硫酸	2,300	1,330	BASF(1973b)(非公表); EFSA(2016)に
(不明)	カリウム			て引用(参照 23)

注)本委員会において、ラットについては第 10 版食品添加物公定書付録 原子量表をもとに二酸化硫黄としての値に換算した。

(3) 反復投与毒性

① ブタ 48 週間経口投与試験(Tilら(1972); JECFA(1987) 及び EFSA(2016) にて引用)

ランドレース種ブタ(雌雄、各群 20 頭)に、ピロ亜硫酸ナトリウムを表 25 のとおりの用量設定で、15 週間又は 48 週間混餌投与する試験が実施されている。別途、摂餌量を同じにした同種ブタ(雌雄、各群 15 頭)に、0(対照群)及び 2.0%(ピロ亜硫酸ナトリウムの消失を考慮した用量として 1.72%)のピロ亜硫酸ナトリウムを 18 週間混餌投与する試験が実施されている。これらの試験は、ピロ亜硫酸ナトリウム添加において生じる、飼料中での分解によるチアミン欠乏の抑制を目的に、全群に対して基礎飼料にチアミンを添加している。

表 25 用量設定

用量設定(%)	0 (対照群)	0.125	0.25	0.5	1.0	2.0
ピロ亜硫酸ナトリウムの消失を	0	0.06	0.16	0.35	0.83	1.72
考慮した用量(%) 注1)						
ピロ亜硫酸ナトリウムの消失を	0	12	32	71	170	350
考慮した用量(%)を mg/kg 体						
重/日に換算(二酸化硫黄とし						
て) (mg/kg 体重/日) ^{注2)}						

- 注1) Tilら(1972)により、飼料貯蔵後のピロ亜硫酸ナトリウム残留率から換算された。(参照91)
- 注2) 本委員会において、ブタ平均体重 100 kg、平均摂餌量 3 kg/日として、第 10 版食品添加物公定書付録原子量表をもとに二酸化硫黄としての値に換算した。

各投与群で認められた毒性所見は表 26 のとおりである。

表 26 毒性所見

投与群	毒性所見
	雌雄
2.0%	・体重増加の有意な抑制(ただし、別途実施の 18 週間混餌投与試験
(1.72%)	では成長率に影響なし
	・肝臓の脂肪貪食クッパー細胞増加
1.0%	・胃(幽門部、噴門部)で粘膜ヒダの発生及び部分的に乳頭状又は敷
(0.83%)	石状変化、盲腸粘膜の黒色化。
以上	・組織学的には、胃(幽門部、噴門部)の粘液腺及び表層上皮の過形
	成、食道の上皮内小膿瘍及び好中球浸潤を伴う上皮過形成、盲腸の
	粘膜固有層に黒緑色素顆粒貪食マクロファージ出現

そのほか、以下の所見が認められた。

- ・尿及び肝臓中のチアミン量が量依存的に減少したが、チアミン無添加の基 礎飼料を与えた群(別実験)と比べてチアミン量が低かったのは 2.0%投与 群のみであった。
- ・盲腸のマクロファージ浸潤は0.5%群の1例にも認められた。
- ・1.0%以上の投与群において、心臓、腎臓及び脾臓の相対重量のみが増加した。
- ・2.0%投与群において、肝臓の相対重量のみが増加した。

なお、試験終了時の血液検査及び便潜血検査において、投与群と対照群の間に投与物質に起因する又は明らかな差はなかった。

Til ら (1972) は、ピロ亜硫酸ナトリウムの NOEL を 0.35%投与群 ³¹としている。(参照 91)

EFSA (2016) は、JECFA (1987) ³²を引用し、NOAEL を 0.35%投与群 ³¹における 72 mg/kg 体重/日 (二酸化硫黄として) ³³としている。(参照 23)

本委員会としては、1.0%以上の投与群で軽度の胃及び食道の所見が認められたことから、ピロ亜硫酸ナトリウムの NOAEL を 0.5%投与群から算出した 71~mg/kg 体重/日(二酸化硫黄として)と判断した。

② ラット2年間反復投与毒性・生殖毒性・発がん性併合試験 (Til ら (1972); JECFA (1987) 及び EFSA (2016) にて引用)

Wistar ラット(雌雄、各群 20 匹)に、ピロ亜硫酸ナトリウムを表 27 のと

-

³¹ 飼料貯蔵後のピロ亜硫酸ナトリウム残留率から換算された、ピロ亜硫酸ナトリウムの消失を考慮した用量

³² JECFA (1987) は、本試験におけるピロ亜硫酸ナトリウムの NOEL を 0.25%投与群としている (参照 90)。

³³ JECFA (1987) により、ピロ亜硫酸ナトリウムから生じる二酸化硫黄を 67.39%、ブタ平均体重 100 kg、平均摂餌量 3 kg/日として換算されたとしている。(参照 23)

おりの用量設定で、3世代にわたり2年間(104週間)混餌投与する試験が実 施されている。この試験は、ピロ亜硫酸ナトリウム添加において生じる、飼 料中での分解によるチアミン欠乏の抑制を目的に、全群に対して基礎飼料に チアミンを添加している。

表 27 用量設定

用量設定(%)	0	(対照群)	0.125	0.25	0.5	1.0	2.0
mg/kg 体重/日に換算(二酸化硫	0		37	75	150	300	600
黄として) (mg/kg 体重/日) ^{注)}							

注) Til ら (1972) による換算値 (参照 92)

各投与群で認められた毒性所見は表 28 のとおりである。

表 28 毒性所見

投与群	毒性所見				
	雄	雌			
2.0%	・便潜血(100%)(全世代)				
	・ 腺胃部粘膜の限局性肥厚(隆起)及び少量の赤茶色物質(全世代)				
	・前胃及び腺胃の過形成又は炎症性変化(全世代)				
		へモグロビン、ヘマトクリット値及			
		び赤血球数の僅かな減少(F0世代)			
1.0%	・便潜血(13~60%)(全世代)				
	・腺胃部粘膜の限局性肥厚(隆起)及び少量の赤茶色物質(全世代)				
	・前胃及び腺胃の過形成又は炎症性変化(全世代)				
0.5%	・前胃の上皮過形成(F ₂ 世代)				

そのほか、以下の所見が認められた。

- \cdot 0.125%以上の投与群及び 0.25%以上の投与群における、それぞれ尿及び肝 臓中のチアミン量の用量依存的な減少。
- ・0.125%投与群(雄)における、アラニンアミノトランスフェラーゼ(ALT) 34活性の有意な低下。
- ・0.25%投与群(雌)及び0.5%投与群(雄)においても、投与32週目に限っ て、10%の割合で便潜血が認められた。

なお、摂餌量に投与の影響は認められなかった。

Til ら (1972) は、本試験におけるピロ亜硫酸ナトリウムの NOAEL を 0.25%投与群とし、ピロ亜硫酸ナトリウムの消失を考慮して 72 mg/kg 体重/

³⁴ 原著においては、"glutamic-pyruvic-transaminase"と記載されている。

日(二酸化硫黄として)としている。(参照92)

EFSA (2016) は、Til ら (1972) の設定した NOAEL を支持している。 (参照 23)

JECFA (1987) は、本試験における NOEL を 0.25%投与群としている。 (参照 90)

本委員会としては、0.5%以上の投与群において胃の病理所見及び便潜血の所見が認められたことから、本試験における反復投与毒性に係るピロ亜硫酸ナトリウムの NOAEL を 0.25%投与群から算出した 72 mg/kg 体重/日(二酸化硫黄として)と判断した。

③ 参考資料

以下のa.及びb.の知見は、病変の発生頻度が不明であること、統計学的処理がなされていないこと等から、亜硫酸塩等及び亜硫酸水素アンモニウムの NOAEL 等を判断する試験としては適さないものの、ピロ亜硫酸ナトリウムによって誘発された胃病変に係る情報が得られることから、参考資料として記載する。

a. ラット 8 週間及び 12 週間経口投与試験 (Beems ら (1982); JECFA (1987)、 EFSA (2016) にて引用)

Wistar ラット (Cpb: WU。性別及び匹数不明) に、表 29 のとおり、ピロ亜硫酸ナトリウムを 0、4 又は 6%添加した餌を 8 週又は 12 週にわたって投与して剖検し、胃部の障害について病理組織変化を評価する試験が実施されている。

また、Wistar ラット(Cpb: WU。性別及び匹数不明)に、別途、ピロ亜 硫酸ナトリウムを 0 又は 6%添加した餌を 4、7、14、21 又は 28 日間投与して、胃部の病理組織変化を経時的に観察する試験が実施されている。

上記両試験では、ピロ亜硫酸ナトリウムの添加によって生じる飼料中チアミンの分解による欠乏を考慮して、全群に対して基礎飼料に 50 mg/kg の割合でチアミンを添加している。

表 29 用量設定

用量設定(%)	注1)	0	(対照群)	4 注2)	6

- 注1) 摂餌量及び体重不明のため、体重当たりの投与量換算はしていない。
- 注2) 4、7、14、21 又は28 日間投与した試験ではこの群の設定はない。

その結果、6%群の12週投与では、胃底部粘膜に胃底腺の過形成が散在性に認められた。この領域には、脂肪、グリコーゲン及び粘液を欠くペプシ

ノーゲン顆粒を多く含む腫大した主細胞が見られた。経時的な観察の結果 から、既存の主細胞が増殖能をもつ活性化した主細胞に変化していくこと が推察された。また、同部位には腺管の拡張も認められた。これらは淡明 で大型、まれに細胞内粘液を含む立方上皮に縁取られていた。

Beems ら (1982) は、特殊染色及び免疫組織化学並びに電子顕微鏡による検査の結果、亜硫酸塩の投与により、主細胞の活動性亢進を伴う胃底腺の過形成及び主細胞の脱分化を伴う腺管の拡張を誘発する可能性があると結論した。ただし、亜硫酸塩がこれらの変化を誘発するメカニズムは不明であるとしている。(参照 23、93、90)

b. ラット8週間飲水投与試験(Hui (1989); JECFA (2000)、EFSA (2016) に て引用)

正常 SD ラット及びタングステン酸ナトリウムで亜硫酸オキシダーゼ (SOX) を欠損処置した SD ラット (SOX 欠損ラット) (雌、8 匹/群) に、表 30 のとおり、ピロ亜硫酸ナトリウムを二酸化硫黄として 0、7、70 又は $350 \cdot 175 \, \text{mg/kg}$ 体重/日添加した水を、8 週間 ($350 \cdot 175 \, \text{mg/kg}$ 体重/日群 にあっては、 $350 \, \text{mg/kg}$ 体重/日を 3 週間投与した後、 $175 \, \text{mg/kg}$ 体重/日を 5 週間投与)にわたって飲水投与した後、剖検し、毒性を評価する試験が実施されている。この試験では、ピロ亜硫酸ナトリウム添加によって生じる飼料中チアミンの分解による欠乏を考慮して、ピロ亜硫酸ナトリウム投与群に対して基礎飼料に $50 \, \text{mg/kg}$ の割合でチアミンを添加している。

表 30 用量設定

用量設定(mg/kg 体重/日) ^{注1)}	0 (対照群)	7	70	350・175 注2)
---------------------------------	---------	---	----	-------------

注1) 二酸化硫黄としての量

注 2) 350 mg/kg 体重/日を 3 週間投与した後、175 mg/kg 体重/日を 5 週間投与

その結果、正常ラット及び SOX 欠損ラットの $350 \cdot 175$ mg/kg 群でのみ前胃及び腺胃に病変が認められた。主な病変は、角化亢進(前胃)、腺管の拡張等であり、その変化は SOX 欠損ラットでは、主細胞の肥大や増生(腺胃)を伴い、より明らかであった。以上の結果から、Hui (1989) は、ピロ亜硫酸ナトリウムの NOAEL を正常ラット及び SOX 欠損ラットともに 70 mg/kg 体重/日(二酸化硫黄として)としている。(参照 94)

EFSA (2016) は、70 mg/kg 体重/日 (二酸化硫黄として) を本試験の NOAEL と評価している。(参照 23)

(4) 発がん性

① マウス 2 年間発がん性試験(Tanaka ら(1979); JECFA(1983 及び 1987)並びに EFSA(2016)にて引用)

ICR マウス (雌雄、各群 50 匹) に、ピロ亜硫酸カリウムを表 31 のとおり 投与群を設定して、2年間飲水投与する試験が実施されている。

表 31 用量設定

用量設定(%)	0 (対照群)	1	2
mg/kg 体重/日に換算 ^{注1)} (mg/kg 体重/日)	0	1,500	3,000
mg/kg 体重/日に換算 (二酸化硫黄として)	0	432	864
(mg/kg 体重/日) ^{注2)}			

注1) FAO/WHO 食品添加物専門家会議(JECFA)による換算値(参照 95)

注2) 本委員会において、第10版食品添加物公定書付録 原子量表を基に二酸化硫黄としての値に換算した。

その結果、腫瘍ごとの発生率及び全腫瘍の発生率は、投与群と対照群の間に有意差はなかった。

なお、投与後 180 日の生存率に投与の影響は認められなかった。

Tanaka ら (1979) は、ピロ亜硫酸カリウムがマウスにおいて発がん性を示さないことが推察されるとしている。(参照 96)

JECFA (1983 及び 1987) は、腫瘍発生率について、投与群と対照群に差は見られなかったとしている。(参照 95、90)

本委員会としては、本試験における条件下でピロ亜硫酸カリウムのマウスにおける発がん性は認められないと判断した。

② ラット2年間反復投与毒性・生殖毒性・発がん性併合試験 (Til ら (1972); JECFA (1987) 及び EFSA (2016) にて引用) (再掲(3)②)

Wistar ラット(雌雄、各群 20 頭)に、ピロ亜硫酸ナトリウムを表 32 のとおりの用量設定で、3 世代にわたり 2 年間(104 週間)混餌投与する試験が実施されている。この試験は、ピロ亜硫酸ナトリウム添加において生じる、飼料中での分解によるチアミン欠乏の抑制を目的に、全群に対して基礎飼料にチアミンを添加している。

表 32 用量設定

用量設定(%)	0 (対照群)	0.125	0.25	0.5	1.0	2.0
mg/kg 体重/日に換算 (二酸化硫黄として)	0	37	75	150	300	600
(mg/kg 体重/日) ^{注)}						

注) Til ら (1972) による換算値 (参照 92)

その結果、以下の所見が認められた。

- ・雄において、肺のリンパ網内系腫瘍35の発生数が用量依存的に減少した。
- ・対照群において、甲状腺腫瘍及び下垂体腫瘍の発生率が低かった。

なお、そのほかの臓器、組織における腫瘍の数、分布、種類において被験 物質投与に関連する影響は認められなかった。

Til ら (1972) は、甲状腺腫瘍及び下垂体腫瘍の発生については、使用した動物種において通常見られる数と同等であるとし、本試験において、亜硫酸塩に起因する発がん性の影響は見られなかったとしている。(参照 92)

JECFA (1987) は、本試験において、どの部位においても腫瘍発生率は増加しなかったとしている。(参照 90)

EFSA (2016) は、ピロ亜硫酸ナトリウムの発がん性の影響は示されなかったとしている。(参照 23)

本委員会としては、本試験における条件下でピロ亜硫酸ナトリウムのラットにおける発がん性は認められないと判断した。

③ 参考資料

a. ラット2年間発がん性試験(Feron 及び Wensvoort (1972); EFSA (2016) にて引用)

本知見は、胃以外の組織の解析が行われていないため亜硫酸塩等及び亜硫酸水素アンモニウムの発がん性評価に用いることはできないものの、胃はピロ亜硫酸ナトリウムの毒性標的であること及び本知見から前記(3)3a.及びb.のピロ亜硫酸ナトリウムによって誘発された胃病変が将来的に腫瘍に進展する可能性は低いという情報が得られることから、参考資料として記載する。

Wistar ラット(雌雄、各群の匹数不明)に、ピロ亜硫酸ナトリウムを表 33 のとおり投与群を設定して、2 年間混餌投与して胃の病理変化を評価する試験が実施されている。この試験では、ピロ亜硫酸ナトリウム添加によって生じる飼料中チアミンの分解による欠乏を考慮して、全群に対して基 礎飼料に 50 mg/kg の割合でチアミンを添加している。

表 33 用量設定注

用量設定(%) 0(対照群)	0.125	0.25	0.5	1	2
----------------	-------	------	-----	---	---

注)ラット体重、摂餌量不明のため摂取量換算値不明

³⁵ 原著おいて、Lung の項に"Malignant lymphoreticular tumour"と記載されている。

その結果、前胃においては、0.5%以上の投与群で、腺胃境界縁の隆起及び肥厚(角化亢進及び表皮肥厚)が著明で粘膜下層には軽度の慢性炎症性細胞浸潤が認められた。腺胃においては、1%以上の投与群で、胃底線の過形成及び粘膜固有層~粘膜下層の軽度の慢性炎症性細胞浸潤が認められた。2%投与群の30%には、ごく軽度の萎縮性胃炎が認められ、この萎縮性胃炎では炎症性変化よりも粘膜の萎縮が顕著であり、数例では細胞異型を示さない腺の粘膜下層への嚢胞状増生も認められた。なお、胃の幽門部を損傷していることを示す証拠はなかった。

Feron 及び Wensvoort (1972) は、萎縮性胃炎を呈したラットの数例で認められた嚢胞状に拡張した腺の粘膜下層への増生については、萎縮性胃炎における一般的な所見であり、粘膜腺の腫瘍性増生を示すものではないとして、これらの病理組織検査結果から被験物質が胃の腫瘍形成を誘発する証拠は見られなかったと結論している。(参照 97)

EFSA (2016) は、顕微鏡検査の結果から、胃に腫瘍が形成された証拠はなかったとしている。(参照 23)。

b. ラット 32 週間発がん性試験 (Takahashi ら (1986); JECFA (2000) にて 引用)

本知見は、二段階発がんモデルを用いた試験であるため亜硫酸塩等及び 亜硫酸水素アンモニウムの発がん性評価に用いることはできないものの、 ピロ亜硫酸カリウムの胃発がんプロモーション作用を示唆する知見である ため、参考資料として記載する。

Wistar ラット(雄、各群 $10\sim30$ 匹)に、表 34 のとおり、イニシエーション処理として N-メチル-N'-ニトロ-N-ニトロソグアニジン(MNNG: 100 mg/L)及び 10%塩化ナトリウム、プロモーション処理として 1%ピロ亜硫酸カリウムをそれぞれ摂取させる二段階発がん性試験が実施されている。

表 34 用量設定

群	匹数	イニシエーション段階:	プロモーション段階:
		(8週間)	(32 週間)
1 群	30	MNNG(100 mg/L)を添加した 水	無処理注
		10%塩化ナトリウムを添加した標準飼料	

2 群	19	MNNG(100 mg/L)を添加した	1%ピロ亜硫酸カリウムを添加し
		水	た水
		10%塩化ナトリウムを添加した	標準飼料
		標準飼料	
3 群(対	10	無処理注)	1%ピロ亜硫酸カリウムを添加し
照群)			た水
			標準飼料

注) MNNG 無添加の水及び標準飼料を摂取。

その結果、1群及び2群では、腺胃の幽門領域及び十二指腸に腺癌が認められた。腺胃の幽門腺領域の腺癌は、1群と比較して2群では発生率が有意に増加した。3群(対照群)では腫瘍の発生は認められなかった。

そのほか、2群及び3群(対照群)では、胃底腺の頸粘液細胞(副細胞)数の明らかな増加を伴うびまん性の深い胃小窩が認められた。

Takahashi ら (1986) は、本試験結果を踏まえ、ピロ亜硫酸カリウムが発がんプロモーション作用を有する可能性があるとしているが、そのメカニズムについては胃の刺激や粘膜の障害により間接的に促進されるかは不明であるとしており (参照 98)、JECFA (1999) は、当該結果をそのまま引用している。(参照 99)

(5) 生殖発生毒性

① ラット発生毒性試験(Itamiら(1989); JECFA(1999) 及びEFSA(2016)にて引用)

妊娠 Wistar ラットに、亜硫酸ナトリウム 7 水和物を表 35 のとおり投与群を設定して妊娠 8~20 日まで混餌投与し、妊娠 20 日の胎児発育(胎児試験、各群 10~12 匹)及び出生後 4 週齢までの新生児発育(新生児試験、各群 4 匹)を調べる試験が実施されている。

表 35 用量設定(試験 1)

用量設定(%)						
胎児試験	0 (対照群)	0.32	0.63	1.25	2.5	5
新生児試験	0 (対照群)	0.32	設定なし	設定なし	設定なし	5
mg/kg 体重/日	0	300	1100	記載なし	2100	3300
に換算(mg/kg						
体重/日) ^{注1)}						
二酸化硫黄とし	0	80	280	記載なし	530	840
て換算(mg/kg						
体重/日) ^{注2)}						

注1) Itami ら (1989) による換算値 (参照 100)

各投与群で認められた毒性所見は表36のとおりである。

表 36 毒性所見

投与群	毒性所見				
	母動物 児動物				
5.0%	・体重増加の抑制(投与期間:妊娠8~20日)・摂餌量減少(投与期間:妊娠8~20日)	・胎児体重の低下			
0.32%以上	所見なし				

そのほかに、以下の所見が認められた。

- ・0.32%及び 0.63%投与群において、母動物の摂餌量が有意に低下したが、用量依存的ではなかった。
- ・1.25%群を除く投与群において、腰肋及び骨化遅延等の骨格変異並びに腎盂 又は側脳室の拡張の内臓病変が認められたが、発生率に有意差は認められ なかった。

なお、着床数、生存胎児数、子宮内胚胎児死亡率及び性比について、対照 群と投与群の間に有意な差は認められなかった。また、いずれの投与群にお いても胎児の外表奇形、骨格奇形及び内臓奇形は認められなかった。

新生児試験では、投与群における分娩後 3 週までの母動物体重や、新生児の出生率、生後 4 週までの新生児生存率及び生後 3 週の新生児体重には、対照群と比較して有意差は認められなかった。

Itami ら (1986) は、本試験における亜硫酸ナトリウム 7 水和物の母動物に対する NOEL を 2.5%とし、2.5%投与群の雌を除き、全ての投与群で胎児の体重が有意に低かったが、胎児の生存性や性比に対する影響はなかったとしている。また、0.32%投与群において胎児体重が有意に減少したことから、胎児に対する NOEL は本試験における最低用量以下であるとしている。さらに、本試験条件下において催奇形性を示さないと結論付けている。(参照 100) JECFA (1999) は、母動物では最高用量の 5.0%群にのみ毒性影響がみられているが、胎児では全ての投与群に発育遅延がみられたとして、本試験のLOEL を 80 mg/kg 体重/日(二酸化硫黄として)としている。(参照 99)

EFSA (2016) は、Itami ら (1986) の報告を引用して換算し、母動物に対する毒性の NOAEL は 2.5% (二酸化硫黄として 560 mg/kg 体重/日) であり、胎児に対する毒性の NOAEL は 0.32% (二酸化硫黄として 81 mg/kg 体重/日) 未満としている。また、新生児に対する有害影響はみられなかったこ

と、1 群当たりの母動物数が胎児を検査する試験群(胎児試験)では 10~12 匹のみ、新生児を検査する試験群(新生児試験)では 4 匹のみであること及び新生児試験の被験物質投与群が 2 用量しか設定されていないことを指摘している。(参照 23)

本委員会としては、本試験において 5.0%投与群の母動物で投与期間中に体重増加抑制や摂餌量減少がみられたこと及び 0.32%以上の投与群において胎児体重の低値が認められたことから、亜硫酸ナトリウム 7 水和物の母動物の一般毒性に係る NOAEL を 2.5%投与群から算出した 530 mg/kg 体重/日 (二酸化硫黄として) と判断し、発生毒性に係る LOAEL を 0.32%投与群から算出した 80 mg/kg 体重/日 (二酸化硫黄として) と判断した。催奇形性は認められないと考えた。

② ラット発生毒性試験 (Ema ら (1985); JECFA (1999) 及び EFSA (2016) にて引用)

妊娠 Wistar ラットに、ピロ亜硫酸カリウムを表 37 のとおり投与群を設定して、妊娠 $7\sim14$ 日まで混餌投与し、妊娠 20 日の胎児発育(胎児試験、各群 $12\sim13$ 匹)及び出生後 15 週齢までの新生児発育(新生児試験、各群 $6\sim7$ 匹)を調べる試験が実施されている。

表 37 用量設定

用量設定(%)				
胎児試験	0 (対照群)	0.1	1	10
新生児試験	0 (対照群)	0.1	設定なし	10
ピロ亜硫酸カリウム摂取量	記載なし	0.13±0.02	1.32±0.22	2.86±0.76
(g)				
mg/kg 体重/日に換算(mg/kg	0	65	660	1,430
体重/日) ^{注1)}				
二酸化硫黄として換算	0	37.5	380.5	825.0
(mg/kg 体重/日) ^{注1)}				
mg/kg 体重/日に換算(mg/kg	0	130	1,300	2,900
体重/日) ^{注2)}				
二酸化硫黄として換算	0	75	760	1,700
(mg/kg 体重/日) ^{注2)}				
mg/kg 体重/日に換算(mg/kg	0	130	1,320	2,860
体重/日) ^{注3)}				
二酸化硫黄として換算	0	75	761	1,650
(mg/kg 体重/日) ^{注3)}				
五.4.1年、年、年、10年		•	•	

平均值±標準偏差

注1) 本委員会による換算値。 ラット体重 0.25 kg として mg/kg 体重/日に換算した。第 10 版食品添加物公 定書付録 原子量表をもとに二酸化硫黄としての値に換算した。

注2) JECFA (1999) による換算値 (参照 99)

各投与群で認められた毒性所見は表38のとおりである。

表 38 毒性所見

投与群	毒性所見				
	母動物	児動物			
10%	・摂餌量減少(投与期間:妊娠7~14日) ・一過性の体重減少を伴う体重増加の著し	・胎児体重の低下			
	い抑制 (投与期間:妊娠7~14日)				

そのほかに、以下の所見が認められた。

- ・1%投与群において胎盤重量が有意に低下したが、用量依存的ではなかった。
- ・全ての投与群において、子宮内胎児死亡率が僅かに増加したが、対照群と 比較して有意差はなかった。
- ・新生児の4~12週齢での体重が、対照群と比較して有意に低かった。
- ・10%投与群において、生存新生児数、出生率(新生児数/着床数)及び生後 4日における新生児生存率は低く、死産児数が多かったが、対照群と比較し て有意差はなかった。
- ・全ての投与群において、4週齢以降の児動物の生存率がほぼ一定で対照群より低かったが、対照群と比較して有意差はなかった。

なお、着床数、生存胎児数、死亡胎児数、性比並びに胎児の外表所見、骨格所見及び内臓所見について、対照群と投与群の間に有意差はなく、被験物質投与に関連する毒性所見は認められなかった。

Ema ら (1985) は、10%投与群における出生率の減少等の所見は、妊娠期間中の母動物の栄養失調による影響としており、本試験条件下でピロ亜硫酸カリウムはラットに催奇形性を示さないと結論付けている。(参照 101)

JECFA (1999) は、10%投与群において、母動物及び胎児の体重減少が認められたとし、本試験における NOEL を 760~mg/kg 体重/日 (二酸化硫黄として) とし、催奇形性は認められないとしている。(参照 99)

EFSA (2016) は、1,320 mg/kg 体重/日 (二酸化硫黄として 759 mg/kg 体重/日) を NOAEL としている。また、1 群当りの母動物数が胎児を検査する試験群 (胎児試験) では $12\sim13$ 匹のみ、新生児を検査する試験群 (新生児試験) では $6\sim7$ 匹のみであることを指摘している。(参照 23)

本委員会としては、本試験における母動物に対する一般毒性及び発生毒性に係る NOAEL を、1%投与群から算出した 380.5 mg/kg 体重 /日(二酸化硫 黄として)と判断した。催奇形性は認められないと考えた。

③ ラット 2 年間反復投与毒性・生殖毒性・発がん性併合試験 (Til ら (1972); JECFA (1987) 及び EFSA (2016) にて引用) (再掲(3)②)

Wistar ラット(雌雄、各群 20 匹)に、ピロ亜硫酸ナトリウムを表 39 のとおりの用量設定で、2 年間(104 週間)混餌投与する試験が実施されている。この試験は、ピロ亜硫酸ナトリウム添加において生じる、飼料中での分解によるチアミン欠乏の抑制を目的に、全群に対して基礎飼料にチアミンを添加している。 F_0 世代の全てのラットについて投与 21 週に同一用量群の雌雄を交配させ、その内の半数の F_0 ラットについては投与 34 週にも同一用量群の雌雄を再度交配させた。 F_0 世代の投与 21 週での交配で生まれた同腹児から離乳時に各群で雌雄各 10 匹(F_{1a})を選抜し、各用量群の飼料を 104 週間混餌投与した。 F_{1a} 世代のラットは投与 12 週及び投与 30 週に交配させ、それぞれの交配から同腹児(F_{2a} 及び F_{2b})を得た。 F_{2a} 同腹児からは各群で雄 10 匹(F_{2a}) 及び雌 15 匹(F_{2a})を選抜し、各用量群の飼料を 30 週間混餌投与した。 F_{2a} 世代のラットは投与 14 週及び投与 22 週に交配させ、 F_3 世代を得る試験が実施されている。

表 39 用量設定

用量設定(%)	0 (対照群)	0.125	0.25	0.5	1.0	2.0
mg/kg 体重/日に換算(二	0	37 注	75	150	300	600
酸化硫黄として)		2)				
(mg/kg 体重/日) ^{注1)}						

注1) Tilら(1972) による換算値(参照92)

注2) EFSA (2016) に記載の換算値 (参照 23)

投与群で認められた毒性所見は表 40 のとおりである。

表 40 毒性所見

投与群	毒性所見					
	F ₀ 世代	F ₁ 世代	F ₂ 世代			
2.0%	児動物に対する影響:	親動物に対する影響:	親動物に対する影響:			
	・哺育児体重の低値傾	甫育児体重の低値傾 ・親動物(雌雄)の体重				
	白	増加抑制	増加抑制			
		児動物に対する影響:	児動物に対する影響:			
		・哺育児体重の低値傾向	・哺育児体重の低値傾向			

そのほか、以下の所見が認められた。

・1.0%以下の投与群においては、哺育8日及び21日の哺育児の体重が散発的

に有意に低下したが、用量依存的ではなかった。

- ・0.5、1.0 及び 2.0%投与群において、 F_{2a} 世代の 1 回目の交配から得られた新生児数が有意に減少したが、用量相関性はなく、2 回目の交配から得られた新生児数に減少は認められなかった。
- ・2.0%投与群において、 F_{2a} 世代の雌で腎臓相対重量のみの有意な増加が認められた。

なお、F₀世代では親動物の体重変化に投与の影響は認められなかった。また、雌の妊娠率、同腹児数、出生時体重及び哺育児死亡率に対照群と投与群の間で差は認められなかった。

このほかに、以下の所見が認められた。

- ・各世代の1.0%以上の投与群において便潜血が認められ、発生頻度は1.0%投与群で $13\sim60\%$ 、2.0%投与群で100%であった。同所見は0.25%投与群(雌)及び0.5%投与群(雄)でも10%に投与32週目に限って認められた。
- ・病理学的検査では、各世代の 1.0%以上の投与群において、腺胃の粘液層に 肥厚した突起部及び少量の赤茶色の羊毛状の物質が見られ、前胃及び腺胃 の過形成又は炎症性変化が認められた。0.5%群の F₂ 世代(雌雄)の前胃に も同様の変化が軽度に認められた。

Til ら (1972) は、本試験では 2.0%投与群でみられた児動物の軽度の成長 遅滞のほかには、生殖毒性試験でピロ亜硫酸ナトリウムの影響を明らかにで きなかったとしている。(参照 92)

EFSA (2016) は、著者の結論に同意し、ピロ亜硫酸ナトリウムの NOAEL を 1.0%投与群から算出した 262 mg/kg 体重/日としている。(参照 23) 本委員会としては、2.0%投与群において親動物及び児動物の体重増加抑制が見られたことから、本試験におけるピロ亜硫酸ナトリウムの親動物に対する一般毒性及び児動物に対する毒性に係る NOAEL を 1.0%投与群から算出した 262 mg/kg 体重/日(二酸化硫黄として)と判断した。また、最高用量においても生殖毒性は認められないと考えた。

4 参考資料

以下の知見は、母動物に対する硫酸ナトリウム、ピロ亜硫酸ナトリウム等のばく露量が不明確であり、用量相関性及び NOAEL を判断する試験としては不適切であるものの、亜硫酸塩等及び亜硫酸水素アンモニウムの発生毒性に係る情報が得られることから、参考資料として記載する。

ラット発生毒性試験(Dulakら(1984): JECFA(1987)及びEFSA(2016)に

て引用)

正常 Wistar ラット(雌、1 群 $14\sim29$ 匹)の対照群と、タングステン酸ナトリウムで亜硫酸オキシダーゼを欠損処置した同種ラット(雌、1 群 $16\sim28$ 匹)に硫酸ナトリウム、ピロ亜硫酸ナトリウム等を摂取させて亜硫酸塩の影響を検討する亜硫酸塩ばく露群を設定し、交配 3 週間前から妊娠 20日まで摂取させた後に妊娠 21日で帝王切開する試験が実施されている。

その結果、亜硫酸塩ばく露群では母動物の受胎率、妊娠中体重、着床前消失胚数及び吸収胚数に亜硫酸塩のばく露による明らかな影響は見られなかった。また、亜硫酸塩ばく露群の胎児について、死亡胎児数及び胎児体重に亜硫酸塩のばく露による明らかな影響は見られなかった。

そのほか、外表、内臓及び骨格検査において、対照群で 1 胎児に、亜硫酸塩ばく露群で 2 胎児に無眼球症が認められた。

Dulak ら (1984) は、亜硫酸塩ばく露群の胎児で認められた無眼球症について、対照群でも同じ奇形が観察されたため、亜硫酸塩のばく露による影響ではないと判断している。また、本研究の結果を踏まえ、雌ラットへの亜硫酸塩のばく露は重大な生殖障害を示す証拠はないと結論付けている。(参照 102)

EFSA (2016) は、この試験結果を引用し、Dulak ら (1984) の上記の結論に同意している。(参照 23)

(6)神経毒性

以下の①の知見は、EFSA が 2022 年に亜硫酸塩類 36 を再評価した際にベンチマークドーズの信頼区間の下限値(BMDL)の設定根拠としている(IV. 2.

(3) 欧州における評価 参照)ものである。本委員会では、ピロ亜硫酸ナトリウムが特定の in vivo 条件下で視神経毒性を示唆するという点を重要と考えるが、視覚系の構造及び機能に多くの種差があり、アルビノラットを用いた電気生理学的研究で観察された視神経毒性を示唆する所見をヒトへ外挿することが困難であることから、視神経毒性に係る NOAEL 等を判断する試験としては適さないと考え、参考資料として記載する。

また、以下の②~⑥は、EFSA が①の知見を補足する所見として取り上げている知見のうち、本委員会として神経毒性の所見であると判断する知見である。いずれの試験も単用量によるものであり、NOAEL を判断できないため、参考資料として記載する。

参考資料

0.

① ラットの視覚誘発電位に及ぼす影響(Ozturkら(2011); EFSA(2022)にて引用)

Wistar ラット(雄、各群 13 匹)に、ピロ亜硫酸ナトリウムを表 41 の用量で蒸留水に溶解したものを 35 日間強制経口投与し、視覚誘発電位(VEP)を測定する試験が実施されている。この試験では、同時に脳及び網膜組織中のチオバルビツール酸反応性物質(TBARS)及び 4-ヒドロキシ-2-ノネナール(4-HNE)の過酸化脂質を測定し、関連性を評価している。

表 41 用量設定

用量設定(mg/kg 体重/日)	0 (対照群)	10	100	260
二酸化硫黄として 換算 (mg/kg体重/日)	0	7	67	175

その結果、ピロ亜硫酸ナトリウムの 100 及び 260 mg/kg 群において視覚誘発電位(VEP)の波形の全成分(P_1 、 N_1 、 P_2 、 N_2 、 P_3)の潜時が、対照群(及び 10 mg/kg 群)と比較して有意に延長した。VEP の波形の振幅には群間で差はみられなかった。

また、二酸化硫黄ばく露の指標である血漿-S-スルホン酸塩や、脂質過酸化の指標である組織中の TBARS 及び 4-HNE のレベルが、被験物質投与群で用量依存的に増加した。以上より、ラットへのピロ亜硫酸ナトリウム投与は、用量依存的に脂質過酸化と VEP の潜時延長を引き起こすことが示された。

これらの結果より、著者は、脂質の過酸化が亜硫酸塩の毒性において重要な役割を果たしている可能性があるとしている。(参照 103)

② ラットの視覚誘発電位に対する α-リポ酸の効果 (Derin ら (2009); EFSA (2022) にて引用)

Wistar ラット(雄、各群 13 匹)を表 42 のように投与群設定し、ピロ亜硫酸ナトリウムを蒸留水に溶解したものを 35 日間強制経口投与した群と α -リポ酸(LA)を併用経口投与した群について、視覚誘発電位(VEP)を測定比較する試験が実施されている。この試験では、同時に脳及び網膜組織中のチオバルビツール酸反応性物質(TBARS)及びグルタチオンペルオキシダーゼ(GPx)活性等を測定して、脳と網膜における酸化ストレスを評価することにより LA の保護作用を評価している。

表 42 投与群設定

投与群設定	0 (対照群)	ピロ亜硫酸ナト リウム群	ピロ亜硫酸ナトリ ウム+LA 群
ピロ亜硫酸ナトリウム(mg/kg 体重/日) (二酸化硫黄換算)	0	260 (175.21)	260 (175.21)
α-リポ酸(LA) ^{注1} (mg/kg 体重/日)	0	0	100

注1:コーンオイルに溶解して強制経口投与

その結果、ピロ亜硫酸ナトリウム群では VEP の潜時が対照群と比較して有意に延長したが、ピロ亜硫酸ナトリウム+LA 群では対照群とほぼ同等の値であった。

また、ピロ亜硫酸ナトリウム群では網膜と脳の TBARS 値が有意に高く、 GPx 活性の大幅な低下を引き起こしたが、ピロ亜硫酸ナトリウム+LA 群では、 いずれの値も対照群と有意差はなかった。

著者らは、LA が、脳と網膜における亜硫酸塩誘発の VEP 変化と酸化ストレスからの保護作用を有するとしている。(参照 104)

③ ラットの体位性感覚誘発電位等に対するキナクリンの効果(Kencebay ら (2013); EFSA (2022) にて引用)

Wistar ラット(雄、各群 10 匹)を表 43 のように投与群設定し、ピロ亜硫酸ナトリウムを蒸留水に溶解したものを 5 週間強制経口投与した群と、遊離脂肪酸を放出する酵素である分泌型ホスホリパーゼ A2 (sPLA2) の阻害剤であるキナクリン (SQ) を同時に腹腔内投与した群について、体性感覚誘発電位 (SEP) を測定比較する試験が実施されている。この試験では、同時に脳組織中の TBARS 活性を測定し、また、カスパーゼ 3 及び TUNEL 染色によって、脳の体性感覚皮質におけるアポトーシスを評価している。

表 43 投与群設定

投与群設定	対照群 (蒸留水)	ピロ亜硫酸ナト リウム群	ピロ亜硫酸ナトリウム +SQ 群
ピロ亜硫酸ナトリウム(mg/kg 体重/日) (二酸化硫黄換算)	0	100 (67.3)	100 (67.3)
キナクリン (SQ) ^{注1} (mg/kg 体重/日)	0	0	10

注1:生理食塩水に溶解して腹腔内投与

その結果、SEP の潜時はピロ亜硫酸ナトリウム群で対照群と比較して有意に延長したが、ピロ亜硫酸ナトリウム+SQ 群では対照群と有意差なく同等のレベルであった。脳組織中TBARS レベルは、ピロ亜硫酸ナトリウム群では対照群で検出されたレベルよりも有意に高かったが、ピロ亜硫酸ナトリウム+SQ 群では対照群と有意差なく同等のレベルであった。また、 $Na_2S_2O_5$ 群では、脳の体性感覚皮質にアポトーシスに関連するカスパーゼ 3 陽性ニューロン及び TUNEL 陽性細胞が観察されたが、ピロ亜硫酸ナトリウム+SQ 群では観察されなかった。

以上のことから、著者らは、亜硫酸塩によって誘発される SEP 変化、酸化 ストレス及びアポトーシスに sPLA2 が関与している可能性があるとしている。 (参照 105)

④ ラットの学習記憶変化に対するクルクミンの効果(Noorafshan ら(2013);EFSA(2022)にて引用)

SD ラット(雄、各群 10 匹)を表 44 のように投与群設定し、ピロ亜硫酸ナトリウムを蒸留水に溶解したものを 8 週間強制経口投与した群と、神経保護作用があるとされるクルクミンを併用投与した群について、ラットの学習及び記憶に対するクルクミンの効果を調査している。投与期間終了後に、部分的に餌を付けた 8 方向放射状迷路を用いてラットを試験し、餌のついたアームに一度で到達したときのみを正解とし、平均正解率 80%になるまでに要した合計日数等を評価した。

表 44 投与群設定

投与群設定	対照群(蒸留水)		ピロ亜硫酸ナトリウム +クルクミン群
ピロ亜硫酸ナトリウム (mg/kg 体重/日)	0	25	25
クルクミン ^{注1} (mg/kg 体重/日)	0	0	100

注1:オリーブオイルに溶解して強制経口投与

その結果、ピロ亜硫酸ナトリウム群は、習得に要する日数が対照群と比較して有意に長く、習得過程及び保持過程 37中の正しい選択が対照群と比較して有意に少なく、参照記憶エラー及び作業記憶エラーが対照群と比較して有意に多かった(p<0.001)が、クルクミン併用群では対照群と有意な差はなかった。

-

³⁷ 習得過程(平均正解率80%になるまでに要した期間)の10日後、ラットの記憶保持を評価した過程。

以上より、著者らは亜硫酸塩へのばく露がラットの学習及び記憶障害に関与しているとし、クルクミン併用投与が亜硫酸塩投与ラットの学習と記憶において保護的な役割を果たすと考察している。(参照 106)

⑤ ラットの小脳深部核構造変化に対するクルクミンの効果(Karmifar ら (2014); EFSA (2022) にて引用)

SD ラット(雄、各群 6 匹)を表 45 のように投与群設定し、ピロ亜硫酸ナトリウムを蒸留水に溶解したものを 8 週間強制経口投与した群と、クルクミンを併用投与した群について、ラットの小脳の構造変化に対するクルクミンの保護的役割の可能性を調査した。8 週間の投与終了後に、右小脳半球を摘出し、薄切切片にクレシルバイオレットで染色した標本について、深部小脳核の総体積及び総ニューロン数を、それぞれ Cavalieri 法と光学解剖法を用いて推定し、立体学的に評価した。

表 45 投与群設定

投与群設定	対照群 (蒸留水)	ピロ亜硫酸ナトリウム群	ピロ亜硫酸ナトリウム +クルクミン群
ピロ亜硫酸ナトリウム (mg/kg 体重/日)	0	25	25
クルクミン ^{注1} (mg/kg 体重/日)	0	0	100

注1:オリーブオイルに溶解して強制経口投与

その結果、ピロ亜硫酸ナトリウム群ラットの深部小脳核の総体積及び総ニューロン数は、対照群と比較して、それぞれ 20%と 16%減少していた (P<0.04)。一方、ピロ亜硫酸ナトリウム+クルクミン群ラットでは、深部小脳核の総体積及びニューロン数のいずれにおいても対照群との間に有意な変化は観察されなかった。

以上より、著者らは亜硫酸塩のばく露がラットの深部小脳核に構造変化を 誘発し、クルクミン併用投与によってこれらの構造変化を防ぐことができる と結論している。(参照 107)

⑤ ラットの内側前頭前野構造変化に対するクルクミンの効果(Noorafshan ら(2015): EFSA(2022) にて引用)

SD ラット(雄、各群 6 匹)を表 46 のように投与群設定し、ピロ亜硫酸ナトリウムを蒸留水に溶解したものを 8 週間強制経口投与した群と、クルクミンを併用投与した群について、ラットの内側前頭前野(mPFC)の構造変化に対するクルクミンの保護的役割の可能性を調査した。8 週間の投与終了後に、

右脳半球を摘出し、薄切切片にクレシルバイオレットで染色した標本について、mPFCの総体積とニューロン数、グリア細胞数を、それぞれ Cavalieri 法と光学解剖法を用いて推定し、立体学的に評価した。また、ランダム切片の作成によって樹状突起の長さを推定した。

表 46 投与群設定

投与群設定	対照群 (蒸留水)	ピロ亜硫酸ナトリウ ム群	ピロ亜硫酸ナトリウム +クルクミン群
ピロ亜硫酸ナトリウム (mg/kg 体重/日)	0	25	25
クルクミン ^{注1} (mg/kg 体重/日)	0	0	100

注1:オリーブオイルに溶解して強制経口投与

その結果、ピロ亜硫酸ナトリウム群では、対照群と比較して mPFC の体積減少 (~8%)、ニューロン数の減少 (~15%)、及びグリアの数の減少 (~14%)が有意に認められた (P<0.005)。さらに、同群では、ニューロンあたりの樹状突起の長さの減少 (約 10%)及びニューロンあたりの総スパイン数の減少 (約 25%)が有意に認められた (P<0.005)。一方、クルクミン併用投与群ではこれらの変化は明らかでなかった。以上より、著者らは亜硫酸塩のばく露がラットの mPFC の構造変化を誘発し、クルクミン併用投与がこれらの構造変化に対して保護的な役割を果たしたと結論している。(参照 108)

(7) 毒性のまとめ

亜硫酸塩等及び亜硫酸水素アンモニウムには、生体にとって特段問題となる 遺伝毒性はないと判断した。

反復投与毒性については、ブタ 48 週間経口投与試験(Til ら (1972))において、軽度の胃及び食道の所見が認められたことから、本試験におけるピロ亜硫酸ナトリウムの NOAEL を 71 mg/kg 体重/日(二酸化硫黄として)と判断した。また、ラット 2 年間反復投与毒性・生殖毒性・発がん性併合試験(Til ら (1972))において、胃の病理所見及び便潜血の所見が認められたことから、本試験におけるピロ亜硫酸ナトリウムの NOAEL を 72 mg/kg 体重/日(二酸化硫黄として)と判断した。

発がん性については、マウス2年間発がん性試験(Tanaka ら(1979))及びラット2年間反復投与毒性・生殖毒性・発がん性併合試験(Til ら(1972))において、発がん性は認められないと判断した。

生殖毒性については、ラット2年間反復投与毒性・生殖毒性・発がん性併合 試験(Tilら(1972))において、親動物及び児動物の体重増加抑制が見られた ことから、本試験におけるピロ亜硫酸ナトリウムの親動物に対する一般毒性及び児動物に対する毒性に係る NOAEL を 262 mg/kg 体重/日 (二酸化硫黄として) と判断し、最高用量においても生殖毒性は認められないと考えた。

発生毒性については、ラット発生毒性試験(Itami ら (1989); Ema ら (1985))の結果から、母動物に対する一般毒性に係る NOAEL を 380.5 mg/kg 体重/日(二酸化硫黄として)と判断し、発生毒性に係る LOAEL を 80 mg/kg 体重/日(二酸化硫黄として)と判断した。催奇形性は認められないと考えた。

神経毒性については、アルビノラットで観察された視神経毒性など一定のハザードの存在が示唆され、ヒトへの毒性影響の懸念がある。そのうち、Ozturkら(2011)の知見に関しては、視覚系の構造及び機能に多くの種差があり、ヒトへの外挿が困難であることから、視神経毒性に係る NOAEL 等を判断することは適切でないと考えた。一方、Ozturkら(2011)以外の知見に関しては、いずれの試験も単用量によるものであり、NOAELを判断できなかった。

以上のことから、本委員会としては、亜硫酸塩等及び亜硫酸水素アンモニウムの最小の NOAEL は、71 mg/kg 体重/日(二酸化硫黄として)と判断した。

3. ヒトにおける知見

(1) アレルギー性疾患患者等を対象とした経口負荷試験

添加物評価書「亜硫酸水素アンモニウム水」において、アレルギー性疾患患者等を対象としたピロ亜硫酸カリウム及びピロ亜硫酸ナトリウムを含むピロ亜硫酸塩並びに亜硫酸水素ナトリウムに関する経口負荷試験の結果、症状等が報告されている試験結果は①の表 47 のとおりである (参照 4)。ただし、このうち、Botey ら (1987) は、未成年者を対象とした試験として今般新たに報告された知見である。

また、今般新たに報告された②の知見では、喘息患者を対象としたピロ亜硫酸カリウムに関する経口負荷試験の結果、症状等と有病率が報告されている。

① 試験結果一覧

表 47 経口負荷試験の結果

対象者(基礎疾患	被験物質	摂取量等	症状等	参照文献
等)				
50 歳男性(亜硫酸を	亜硫酸水素	10 mg(単回)	紅斑、痒み、悪心、	Prenner 及 び
含むサラダの摂取後	ナトリウム		熱感、咳、喉の圧迫	Stevens (1976);
に全身性のアレルギ			感	JECFA (1987) に
一反応)				て引用(参照 109、

対象者(基礎疾患	被験物質	摂取量等	症状等	参照文献
等)				
				90)
13~64 歳男性 3 人、	ピロ亜硫酸	25 mg(単回)	一秒量(FEV ₁)の低	Freedman
女性 5 人(喘息)	ナトリウム	(二酸化硫黄と	下(12%以上)	(1977); JECFA
		して)		(1987) にて引用
				(参照 110、90)
67 歳女性(喘息)	ピロ亜硫酸	不明	気管支痙攣	Baker ら (1981);
	ナトリウム			JECFA (1987) に
23 歳女性(喘息)	ピロ亜硫酸	500 mg (単	最大呼吸流量の低下	て引用(参照 111、
	ナトリウム	回)	(440 L/min から 100	90)
			L/min)	
27~65 歳白人女性 4	ピロ亜硫酸	1, 5, 10, 25	喘息様症状、FEV ₁ の	Stevenson 及 び
人 (喘息)	カリウム	及び 50 mg(30	低下(34~49%)	Simon (1981);
		分間隔投与)		JECFA (1987) に
				て引用(参照 112、
				90)
24 歳男性(季節性ア	ピロ亜硫酸	10 mg 、 25	消化管異常、立ちく	Schwartz (1983)
レルギー性鼻炎)	塩	mg、50 mg、	らみ、血圧低下	(参照 113)
34 歳女性(妊娠中に		(計3回)	吐き気、立ちくら	
めまい、吐き気等の			み、脱力感、めま	
食物アレルギー)			い、血圧低下	
25~59 歳男性 12 人	ピロ亜硫酸	1 、 5 、 10 、	非特異的な刺激症状	Sonin 及 び
(特発性アナフィラ	ナトリウム	25、50、100 及	と自覚症状	Patterson (1985)
キシー)		び 200 mg(15		(参照 114)
		分間隔投与)		
22~55 歳女性 3 人	ピロ亜硫酸	1 、 5 、 10 、	FEV ₁ の低下(38%~	Yangら(1986)(参
(喘息)	カリウム	25、及び 50 mg	65%)、喉及び胸部の	照 115)
		(20 分間隔投	圧迫感、呼吸困難、	
		与)	喘鳴、空咳、頭痛、	
			発赤、鼻漏、流涙、	
			鼻結膜炎	
38 歳女性(喘息)	ピロ亜硫酸	不明	気道狭窄	Acosta 5 (1989);
	ナトリウム			EFSA (2016) にて
				引用 (参照 116、
				23)

対象者(基礎疾患	被験物質	摂取量等	症状等	参照文献
等)				
27~46 歳男性 6 人、	ピロ亜硫酸	1 、 5 、 10 、	FEV ₁ の低下(20%以	Sprenger 5
女性7人(亜硫酸塩等	カリウム	25、50、100 及	上)	(1989)(参照
過敏症)		び 200 mg(20		117)
		分間隔投与)		
34 歳コーカソイド女	ピロ亜硫酸	1 、 5 、 10 、	鼻うっ血、鼻漏、	Sokol 及び Hydick
性(アレルギー性鼻	ナトリウム	25、50、100 及	顔、唇及び眼周囲組	(1990)(参照
炎、鼻ポリープ症、		び 200 mg	織の腫脹、蕁麻疹	118)
再発性副鼻腔炎)				
22 歳女性(季節性鼻	ピロ亜硫酸	25 mg(単回)	蕁麻疹、鼻の痒み、	Belchi-Hernandez
結膜)	カリウム		鼻漏、発声困難	ら(1993); EFSA
				(2016) にて引用
				(参照 119、23)
36 歳女性(喘息、鼻	ピロ亜硫酸	25 mg(単回)	FEV ₁ の低下(24%)	Wuthrich
炎)	ナトリウム			(1993a) ; EFSA
37 歳男性(再発性の	ピロ亜硫酸	50 mg(単回)	蕁麻疹	(2016) にて引用
急性蕁麻疹、血管性	ナトリウム			(参照 120、23)
浮腫、呼吸困難)				
47 歳男性(再発性の	ピロ亜硫酸	50 mg(単回)	蕁麻疹	Wuthrich 5
急性蕁麻疹、血管性	ナトリウム			(1993b)(参照
浮腫、呼吸困難)				121)
12-23 歳男性 10 人、	ピロ亜硫酸	1 、 10 、 25 、	FEV ₁ の低下(20%)	Gastaminza 5
女性8人(喘息)	ナトリウム	50、75、100 及		(1995) ; EFSA
		び 150 mg(10		(2016) にて引用
		分間隔投与)		(参照 122、23)
25 歳白人男性(ぶど	ピロ亜硫酸	10 mg(単回)	顔面に痒みを伴う紅	Gall ら (1996);
う酒等の摂取後に紅	ナトリウム		斑性皮疹及び腫脹	EFSA (2016) にて
斑性皮疹等の症状)				引用 (参照 123、
				23)
53 歳女性(点眼薬に	亜硫酸水素	200 mg (単	眼周囲の紅斑性浮腫	Park and Nahm
よる眼周囲の紅斑性	ナトリウム	回)		(1996)(参照
浮腫)				124)
24~31 歳女性 4 人	ピロ亜硫酸	45 mg (単回)	FEV ₁ の低下(15%以	Vally 及 び
(喘息)	ナトリウム	注)	上)	Thompson
				(2001) ; EFSA

対象者(基礎疾患	被験物質	摂取量等	症状等	参照文献
等)				
				(2016) にて引用
				(参照 125、23)
56 歳男性 (6 か月	ピロ亜硫酸	10 mg(単回)	体幹、上肢及び頭の	Asero (2005);
間、体幹、上肢及び	ナトリウム		掻痒感	EFSA (2016) にて
頭の掻痒感)				引用 (参照 126、
				23)
2~6 歳小児(女子 6	亜硫酸水素	5 mg 投与。症	血管浮腫のあった1例	Botey 5 (1987);
人、男子2人)	ナトリウム	状出なければ 1	以外、全例で蕁麻疹	JECFA (1999) に
(亜硫酸塩にアレル		時間後 25 mg 投		て引用(127、99)
ギーの既往又は疑		与。		
\v)				

注) 原著において、ぶどう酒 150 mL 中に 300ppm の亜硫酸が含まれることから、比重1として換算した。

経口負荷試験(Robertら(1986))

非ステロイド依存性喘息患者 120名及びステロイド依存性喘息患者 83名に、ピロ亜硫酸カリウムの経口カプセルを表 48のとおり摂取量を設定し、症状が出なければ 30 分間隔で漸増的に摂取する一重盲検スクリーニング試験(試験 I)が実施されている。

表 48 用量設定

被験物質	摂取量
ピロ亜硫酸カリウム (mg)	1, 5, 10, 25, 50, 100, 200

また、試験 I のうち陽性反応が見られた非ステロイド依存性喘息患者 5 名及びステロイド依存性喘息患者 7 名を対象として、プラセボ又は試験 I の同様の方法でピロ亜硫酸カリウムを摂取する二重盲検試験(試験 II)が実施されている 38 。

試験 I の結果、非ステロイド依存性喘息患者 5 名(4.2%)及びステロイド 依存性喘息患者 16 名(19.3%)で、ピロ亜硫酸カリウム摂取後 30 分間以内に FEV_1 の低下が観察された。

また、試験Ⅱの結果、非ステロイド依存性喘息患者1名(20.0%)及びステ

³⁸ 試験対象者は、1回目にスクラロース又はピロ亜硫酸カリウムを被験物質として摂取後、少なくても3日間空けてから、2回目に1回目とは別の被験物質を摂取した。

ロイド依存性喘息患者 3 名(42.9%)で FEV₁が低下した。

試験対象となった喘息患者全体における亜硫酸塩過敏症の有病率は 3.9%であり、その集団にはステロイド依存性喘息患者が多く含まれていた。

Robert ら (1986) は、喘息患者全体における亜硫酸塩過敏症の有病率は 3.9%以下であり、ステロイド依存性喘息患者は最も高いリスクを有すると結論付けた。(参照 128)

③ 参考資料

a. 吸入負荷試験 (Fine ら (1987); EFSA (2022) にて引用)

以下の知見は、肺からの吸入投与の特徴を示した知見であるが、食品に使用されている「亜硫酸塩等」及び「亜硫酸水素アンモニウム水」は、摂取時及び摂取後に一部が二酸化硫黄として遊離し、これが吸入され、肺から吸入される可能性があることから、参考資料とした。

アレルギー性疾患患者等を対象とした亜硫酸ナトリウムに関する吸入負 荷試験の結果、症状等が報告されている試験結果は表 49 のとおりである。

表 49	ᇄᇧ	負荷試験の結果
1 X 43	蚁八	貝叩武殿以心木

対象者(基礎疾患	被験物質	摂取量等	症状等	参照文献
等)				
22~30 歳男性 5 人、	亜硫酸ナト	0.03、0.1、	気管支収縮、比気道	Fine 5 (1984);
女性5人(喘息)	リウム溶液	0.3、1.0、	抵抗(SRaw)の増加	EFSA (2022) にて
	(pH9	3.0、10.0		引用(参照 129)
	pH6.6 及び	mg/ml(吸入		
	pH4の3種	溶液濃度とし		
	の pH の溶	て) (1分間隔		
	液を使用)	投与)		

b. 経口負荷試験(Taylorら(1988)原著未確認)

以下の知見は、亜硫酸塩への過敏性が確認されている喘息患者を対象と した知見であるが、食品に含まれている亜硫酸塩に対する過敏性反応を確 認する試験であることから、参考資料とした。

亜硫酸塩過敏症である喘息患者 8 名を対象に、亜硫酸塩を含む食品における感受性を確認する二重盲検プラセボ対照食品試験が実施されている。

その結果、過敏性反応は一貫しておらず、Taylor ら (1988) は亜硫酸塩 に過敏性を有する喘息患者が亜硫酸塩を含む食品を摂取しても必ずしも反応するとは限らないと結論づけている。(参照 130)

(2) 症例報告等

添加物評価書「亜硫酸水素アンモニウム水」において、健常人、又は、経口 負荷試験ではない、二酸化硫黄並びに亜硫酸ナトリウム及びピロ亜硫酸ナトリ ウムを含む亜硫酸塩を被験物質とした症例報告等に関する知見が検討されてお り(参照 4)、今般新たに②、③、⑥、⑦、⑧、⑩、及び⑪のレビューを含む知 見が報告されている。

① 症例報告 (Tsevat ら (1987))

亜硫酸塩 92ppm を含む白ぶどう酒を数口飲んだ慢性のステロイド依存性喘息患者(男性、33歳)がアナフィラキシー反応を起こし死亡した症例の報告が行われている。

この患者は、乾燥杏子の摂取による急性の喘息発作の既往歴があり、過去にレストランでサラダを食した直後にめまいや悪心、呼吸困難を起こしたことがあった。(参照 131)

② 症例報告(宮澤ら(2018))

二酸化硫黄を含むぶどう酒を飲んだ患者(男性、66 歳)が、飲酒後急速な全身の浮腫性紅斑や咽頭や喉頭の違和感を訴え、徐々に呼吸困難も認めたため緊急搬送された症例の報告が行われている。

この患者は、過去にぶどう酒を飲んだ後にアナフィラキシー症状を呈した既往があった。(参照 132)

③ 多量摂取試験 (Rost 及び Franz (1913): JECFA (1983, 1987) 及び EFSA (2016) にて引用)

健常人 7 名に亜硫酸ナトリウムを経口摂取させる試験が実施されており、表 50 のとおりの症状が報告されている。(参照 23、133、90、95)

耒	50	症例報告結果	且
<i>1</i> 0	.)()	11 M IN	*

被験者	投与量	主な症状
A	5.8 g/日 ^{注1)} ×2 日(連続)	2 日目の投与後、重症のカタル及び後
		遺症(めまい、頭痛、無気力、顔面蒼
		白、強い舌苔等)
A	4.0 g/日 ^{注2)} (単回経口投与)	(なし)
A	4.0 g/日 ^{注2)} ×9 日 (連続)	(なし)
A	2.0 g/日×5 日(連続)	(なし)

A	1.0~3.0 g/日 ^{注3)} ×3 日(連続)	2 日目の投与後、軽い噯気
	朝食のコーヒー摂取時	3 日目の投与後、軽い噯気及び二酸化
		硫黄の味
A	2.0 g/日×2 日(連続)	(なし)
A	1.0 g/日×3 日(連続)	(なし)
В	2.0 g/日×6 日(連続)	(なし)
C	4.0 g/日 ^{注2)} (単回経口投与)	激しい胃腸の刺激、チアノーゼ
	朝食時	
C	1.0 g/日×3 日(連続)	1 日目の投与後、頭痛
	朝食のコーヒー摂取時	繰り返す噯気、金属の味
D	1.0 g/日×3 日(連続)	(なし)
E	2.0 g/日×3 日(連続)	(なし)
E	1.0 g/日×3 日(連続)	(なし)
F	2.0 g/日×2 日(連続)	(なし)
G	1.0~2.0 g/日 ^{注4)} ×2 日(連続)	2 日目の投与後、胃痛

- 注1) 二酸化硫黄として 1.3 g/日
- 注2) 二酸化硫黄として 0.96 g/日
- 注3) 1 日目 1.0 g/日、2 日目 2.0 g/日、3 日目 3.0 g/日

注4) 1 日目 2.0 g/日、2 日目 1.0 g/日

④ 観察研究(Tollefsonら(1988))

米国食品安全・応用栄養センターの有害反応監視システムに報告された亜硫酸塩による有害反応の分析の結果、食品関連有害反応を起こす品目は、頻度の高い順にサラダバー提供品 280 件、サラダバー以外での新鮮果実及び野菜 143 件、ぶどう酒 111 件、海産物 98 件等であった。また、頻繁に報告されている症状は喘息又はアレルギー反応に関連した症状(呼吸困難 314 件、喘鳴50 件、嚥下困難64 件、蕁麻疹64 件、痒み61 件、局所腫脹58 件)及び消化管不調(下痢112 件、嘔吐及び吐き気112 件、腹部痛及び痙攣88 件)であった。報告された患者の多く(74%)は女性であり、年齢を報告している消費者のうち、66%が20~59 歳で、27%が60 歳以上であった。さらに、報告された重篤な反応事例の23.2%に呼吸困難が報告され、発現率はわずかであったが、亜硫酸塩ばく露後の死亡事例の報告もあった。(参照134)

⑤ 横断研究 (Linnebergら (2008); EFSA (2016) にて引用)

コペンハーゲンで実施されたアルコールにより誘発される上気道、下気道 及び皮膚の過敏症症状に関する自己申告による調査(18~69歳の無作為サン プル (n=6,000))において、分析対象とした 4,091 人(男性 1,871 人、女性 2,220 人)のうち、アルコール摂取後の症状として、上気道 7.6%、下気道 3.2%及び皮膚 7.2%における症状発生の申告があり、上気道及び皮膚の症状は、男性よりも女性に有意に多く見られ、上気道の症状では、 $40\sim60$ 歳の間がピークであった。また、いずれの症状もアレルギー性鼻炎及び喘息と有意に関連があった。

Linneberg ら (2008) は、亜硫酸塩の添加は、ぶどう酒により誘発される喘息反応に関係しているとされているが、実験条件下で亜硫酸塩の負荷試験に反応するぶどう酒に過敏な喘息患者は少数であり、反応が起こるには補因子又は他の成分が必要になることを示唆しているとしている。(参照 135、23)

⑥ レビュー (Lafontaine 及び Goblet (1955); JECFA (1983, 1987) 及び EFSA (2016) にて引用)

Lafontaine 及び Goblet(1955)は、亜硫酸塩の摂取によるヒトの嘔吐反射は二酸化硫黄として 250 mg 相当(3.5 mg/kg 体重)以下で一様に発生することを報告し、亜硫酸塩によるヒトの急性毒性が認められていないのは、この生理的な反射によるものであるとしている。(参照 23、136、90、95)

⑦ レビュー (Willisら (1984)))

FDA は正確なピロ亜硫酸ナトリウム過敏症の有病率は不明であるが、米国の 900 万人の気管支喘息の者のうち 5%が亜硫酸塩過敏症の可能性があるとしている。(参照 137)

⑧ レビュー (Van Schoor (2000); EFSA (2022) にて引用)

Van Schoor (2000) は、二酸化硫黄及びピロ亜硫酸ナトリウムにおける気 道過敏性について、神経細胞などのエフェクター細胞、炎症性メディエータ ー (ロイコトリエン、プロスタグランジン等) を産生する細胞への刺激など 多くのメカニズムが関与している可能性があるとしている。(参照 138、47)

⑨ レビュー (Nairら (2003); EFSA (2016) にて引用)

FDA が 1986 年 10 月までに亜硫酸塩処理した食品摂取に原因があるとされた 767 例の有害反応について分析したところ、ほとんどの反応はステロイド依存性喘息患者に発生しており、多くは呼吸困難若しくは呼吸不全又はアナフィラキシーが起きていた。また、亜硫酸塩摂取と関連するとされた死亡 22 例を分析したところ、重篤な喘息患者の死亡 9 例 (年齢・性別不明)及び喘息患者の死亡 5 例 (年齢・性別不明)は亜硫酸塩摂取による可能性があるとした。(参照 139、23)

⑩ レビュー (Vallyら (2012); EFSA (2022) にて引用)

Vally (2012) は、主な亜硫酸塩のばく露は、これらの食品添加物を含む食品及び飲料によるものであるとしている。また、喘息患者における実際の亜硫酸塩過敏症の有病率について不確実性はあるものの、その有病率は3~10%と一貫した報告がなされている。一方、これらの重症度は、さまざまであり、ステロイド依存性喘息患者、顕著な気道過敏症のある患者及び慢性的な喘息のある小児でより高いリスクがあり、亜硫酸塩過敏症に関する多くの潜在的なメカニズムが提案されているものの、明確なメカニズムは不明であるとしている。(参照140、47)

⑪ レビュー (Wuthrich (2018); EFSA (2022) にて引用)

Wuthrich (2018) は、特に白ぶどう酒では亜硫酸塩によるアレルギー様不耐症反応が引き起こされるとしている。また、亜硫酸塩による気管支収縮は、胃で生成される二酸化硫黄が気道の刺激受容体に作用することにより引き起こされることが多く、実際に亜硫酸塩アレルギーである可能性はかなり稀であるとしている。(参照 141、47)

(3) ヒトにおける知見のまとめ

アレルギー性疾患患者等を対象としたピロ亜硫酸カリウム及びピロ亜硫酸ナトリウムを含むピロ亜硫酸塩並びに亜硫酸水素ナトリウムに関する経口負荷投与試験等において、ヒトにおける様々なアレルギー様反応出現の報告がされており、その内容は喘息、鼻漏、蕁麻疹、消化管不調など多岐にわたる。特に、気管支喘息患者においては数~10%程度の者が亜硫酸塩に過敏に反応したとする複数の報告がある。なお、ここで言う「アレルギー様反応」は主にアレルギー性疾患患者等において出現する症状であるが、免疫学的機序で生じると確定できていない症状も含んでいる。また、摂取量が少量でも本反応が引き起こされたとの報告もあるが、本反応が生じた際の亜硫酸塩の摂取量は報告によって大きな幅があり、最低誘発用量を含めた量的な議論をすることは困難であると考えられた。

Ⅲ. 一日摂取量の推計等

Ⅱ.より、亜硫酸塩等及び亜硫酸水素アンモニウムは、胃内では二酸化硫黄として存在すると考えられることから、本件評価対象品目の摂取量の推計に当たっては、二酸化硫黄について推計を行った。また、ピロ亜硫酸カリウムから生じるカリウムイオン及び亜硫酸水素アンモニウムから生じるアンモニウムイオンについても推計を行った。

1. 現在の摂取量

(1) 二酸化硫黄

本件評価対象品目由来の摂取量

我が国において、本件評価対象品目は、添加物として指定されている。(I. 7. (1))

a. マーケットバスケット方式摂取量調査に基づく摂取量

規格基準改正要請者は、令和2年度のマーケットバスケット方式による 摂取量調査の結果(参照 142)を引用し、「亜硫酸塩等」について、混合群 試料 ³⁹ごとの分析 ⁴⁰では検出されなかったと説明し ⁴¹、また、表示群試料 ⁴²ごとの分析では、その摂取量(20歳以上)は、二酸化硫黄として 0.236 mg/人/日であったと説明している。(参照 3)

添加物評価書「亜硫酸水素アンモニウム水」においては、以下のとおり 推計している。

「指定等要請者は、平成 28 年度マーケットバスケット方式による摂取量実態調査結果を引用し、亜硫酸塩類 43の推定一日摂取量は、二酸化硫黄として 0.164 mg/人/日で、対 JECFA ADI (0-0.7 mg/kg 体重/日)比では 0.40%であったと説明している。(引用終わり)」(参照 4)

令和5年度に実施された同様の調査の結果では、「亜硫酸塩等」と、2021年に新たに添加物として指定された「亜硫酸水素アンモニウム水」について、その総量の二酸化硫黄としての摂取量(20歳以上)は、混合群試料ごとの分析では0.03 mg/人/日であり、表示群試料ごとの分析では0.28 mg/人/日であったと報告されている。(参照144)

b. 生産量統計調査に基づく摂取量

規格基準改正要請者は、「食品添加物の安全性確保のための研究」(令和2年度厚生労働科学研究費補助事業)における「生産量統計調査を基にした食品添加物摂取量の推計に関わる研究」(第12回最終報告)(令和2年3月)を引用し、その研究結果から、「亜硫酸塩等」由来の二酸化硫黄としての摂取量の総和は、13.04 mg/人/日と推定している(参照3、145)。

-

³⁹ マーケットバスケット方式食品添加物摂取量調査用食品群ごとに、混合し調製した試料

⁴⁰ 二酸化硫黄として総量を測定

 $^{^{41}}$ 混合群試料ごとの分析では検出されなかったことについて、規格基準改正要請者は、亜硫酸塩が混合試料調製過程において分解するためと説明しており(参照 3、142)、また、同過程において亜硫酸塩が希釈されるためとも考えられる。(参照 143)

⁴² 購入した食品のうち、調査対象とした食品添加物の表示がある食品について、食品ごとに調製した試料

⁴³ 対象添加物として「亜硫酸ナトリウム」、「次亜硫酸ナトリウム」、「二酸化硫黄」、「ピロ亜硫酸カリウム」及び「ピロ亜硫酸ナトリウム」(二酸化硫黄として総量を測定)、本評価書における亜硫酸塩等と同義。

添加物評価書「亜硫酸水素アンモニウム水」においては、以下のとおり 推計している。

「指定等要請者は、食品の安全確保推進研究事業(平成 28 年度厚生労働科学研究費補助金事業)「食品添加物の安全性確保のための研究」における「生産量統計調査を基にした食品添加物摂取量の推計に関わる研究」(第 11 回最終報告)(平成 29 年 3 月)を引用し、添加物として指定されている二酸化硫黄及び亜硫酸塩類 44の調査結果から、添加物由来の二酸化硫黄としての摂取量の総和は、12.3 mg/人/日と推定している。(引用終わり)」(参照 4)

令和 4 年度に報告された同様の調査 45における研究結果では、「亜硫酸塩等」由来の二酸化硫黄としての摂取量の総和は、12.07 mg/人/日と推定している。(参照 146)

c. 理論的最大一日摂取量

規格基準改正要請者は、表 5 のとおり、二酸化硫黄としての残存量が使用基準で設定されている全ての食品について、国民健康・栄養調査の食品群別一日摂取量に各々の食品に対する最大使用量を乗じて、理論的最大一日摂取量(TMDI)を推計した結果、一日摂取量(二酸化硫黄として)は平成 28 年、平成 30 年及び令和元年の 3 年間の平均 46で1歳以上の場合、381.99 mg/人/日、20 歳以上の場合、403.66 mg/人/目であると説明し、また、上記 a. 及び b. の推計と比べて摂取量が多く推計される原因について、国民健康・栄養調査における各食品群に含まれる食品の中で最大使用量が最も高い食品の最大使用量を当該食品群全体の摂取量に乗じているためである、すなわち、例えば、「かんぴょう」の最大使用量は 5 g/kg であるため、「かんぴょう」が含まれる食品群である「その他の淡色野菜」の全112 品目に一律に 5 g/kg が使用されるものとしての計算となり、過大な推計であると説明している。(参照 3、147、148、149)

本委員会としては、規格基準改正要請者及び指定等要請者の説明を踏まえ、TMDIでは過大な推計となると考え、また、添加された本件評価対象品目の一部は二酸化硫黄として揮散して消失することから、生産量統計調査に基づく摂取量よりもマーケットバスケット方式摂取量調査に基づく摂取量の方が

45 「食品添加物の試験法の検討及び摂取量に基づく安全性確保に向けた研究」(令和4年度厚生労働科学研究費補助事業)における「生産量統計調査を基にした食品添加物摂取量の推定に関わる研究その1 指定添加物品目(第13回最終報告)」(令和5年3月)(令和元年度対象の調査)

⁴⁶ 規格基準改正要請者は、平成29年の国民健康・栄養調査には1歳以上の食品群別一日摂取量の掲載がなかったため、28年のデータを採用して3年間の平均値としたと説明している。(参照3)

実態に近いと考える。

令和5年度のマーケットバスケット方式による摂取量調査の結果によると、 「亜硫酸塩等」及び「亜硫酸水素アンモニウム水」の混合群試料からの 20 歳 以上の人の推定一日摂取量は、二酸化硫黄として 0.03 mg/人/日である。また、 表示群試料からの 20 歳以上の人の推定一日摂取量は二酸化硫黄として 0.28 mg/人/日であり、過小な見積もりを避けるため表示群試料からの推定一日摂 取量を採用することとした。一方、表示群試料からの推定一日摂取量は、全 年齢層(1歳以上)では、二酸化硫黄として 0.24 mg/人/日 47である。(参照 144) 次に、本委員会において、令和5年度 食品・添加物等規格基準に関す る試験検査等 食品添加物一日摂取量調査等研究報告書(以下「同報告書」 という。)を確認したところ、「亜硫酸塩等」及び「亜硫酸水素アンモニウム 水」を対象添加物とした表示群試料における二酸化硫黄としての検出量と喫 食量から、添加物由来の摂取への寄与が考えられたのは、主にワインであっ た(参照 143)。同報告書の摂取量調査におけるワイン購入製品中の表示製品 の割合が 50%であったことから、購入食品中の表示製品割合が 2 倍の場合を 仮定すると、全年齢層(1歳以上)では、二酸化硫黄として 0.48 mg/人/日、 20 歳以上では、二酸化硫黄として 0.57 mg/人/日であると算出した(参照 143)

さらに、ぶどう酒は特定の集団に嗜好されて摂取されると考えられるため、 飲酒習慣のある者(国民健康・栄養調査において、週に3日以上、飲酒日1 日当たり清酒換算で1合以上飲酒すると回答した者。以下同じ。令和元年国 民健康・栄養調査において20歳以上の者の20.5%(参照149))のみによっ てその全てが摂取されると仮定すると、本件評価対象品目由来の摂取量は、 二酸化硫黄として2.8 mg/人/日と算出される48。

以上より、現在の本件評価対象品目由来の二酸化硫黄としての摂取量を、全年齢層(1歳以上)では $0.48~\rm{mg/}$ 人/日($8.7\times10^{-3}~\rm{mg/kg}$ 体重/日)、また、20歳以上の飲酒習慣のある者では $2.8~\rm{mg/}$ 人/日($4.7\times10^{-2}~\rm{mg/kg}$ 体重/日 49)と推計した。

47 20歳以上の人の喫食量から調製した試料の結果を基に消費者庁が算出した参考データである。

⁴⁸ 令和5年度のマーケットバスケット方式摂取量調査の表示群の結果 (20 歳以上) に基づく二酸化硫黄としての摂取量は、0.28 mg/人/日であって (参照 144)、この値は、全ての 20 歳以上の者の平均の摂取量と考えられる。しかし、「亜硫酸塩等」及び「亜硫酸水素アンモニウム水」を対象添加物とした表示群試料において、二酸化硫黄としての推定摂取量への主な寄与は、主にぶどう酒である (参照 143) ので、ぶどう酒を摂取する者にあっては、その摂取量は、これより多いと考えられる。そこで、摂取するぶどう酒が全て表示製品である場合等を仮定した 20 歳以上の推計値 0.57 mg/人/日をさらに飲酒習慣のある者の割合 (20.5%) で除して、その摂取量を 2.78…≒2.8 mg/人/日と算出した。

^{49 20}歳以上の平均体重は 58.8 kg として算出(参照 144)

なお、「亜硫酸水素アンモニウム水」は、2021 年に新規指定された添加物であり、添加物評価書「亜硫酸水素アンモニウム水」においては、その唯一の使用対象食品であるぶどう酒からの「亜硫酸水素アンモニウム水」由来の二酸化硫黄の摂取量を、0.113 mg/kg 体重/日と推計している。この推計では、「亜硫酸水素アンモニウム水」の使用基準案で示された最大量(0.2 g/L)が全てのぶどう酒の製造に使用され、全てがぶどう酒製品に残存したと仮定した場合、二酸化硫黄としてぶどう酒 1 L 当たり 129 mg 生じるとし、この値にぶどう酒の推定摂取量(48.2 mL/人/日 50)を乗じている。ただし、ぶどう酒の製造時に二酸化硫黄濃度が減少すると考えられること等から、実際の摂取量は、当該推定一日摂取量よりも少ないと考えたとされた(参照 4)。しかし、令和 5 年度のマーケットバスケット方式による摂取量調査では、対象食品に「亜硫酸水素アンモニウム水」も含まれるため、本結果から現在の「亜硫酸塩等」及び「亜硫酸水素アンモニウム水」由来の二酸化硫黄としての摂取量の値を推計し、上述の「亜硫酸水素アンモニウム水」由来の二酸化硫黄の推定一日摂取量の推計値は用いないこととした。

(2) カリウムイオン

「令和 5 年国民健康・栄養調査」によれば、カリウムの一日摂取量は、1 歳以上の男女では 2,224 mg/人/日、20 歳以上の男女では 2,275 mg/人/日である。 (参照 149)

(3) アンモニウムイオン

添加物評価書「亜硫酸水素アンモニウム水」において、以下のとおり推計している。

「指定等要請者は、添加物評価書「アンモニウムイソバレレート」(第2版) (2014) を引用し、ヒトが食品を摂取することにより、消化管内において、1 日当たり十二指腸で 10 mg、結腸で約3gのアンモニアが産生され、産生されたアンモニアのほとんどが吸収された後、門脈循環に入るとされていると説明している。また、健常なヒトではアンモニウムイオンは肝臓で速やかに尿素に変換され、尿中に排泄されると説明している。(引用終わり)」(参照4)

また、同評価書において、使用基準(表 6)策定後の摂取量として、以下のとおり推計している。

「指定等要請者は、添加物「亜硫酸水素アンモニウム水」が使用基準案で示した最大量が全てのぶどう酒の製造に使用され、全てが製品ぶどう酒に残存し

_

⁵⁰ 国税庁平成30年度分酒類販売(消費)数量等の状況表(都道府県別)に示された果実酒及び甘味果実酒の販売(消費)数量の合計である362,001 kL/年及び平成30年国民健康・栄養調査報告を基に、飲酒習慣のある者の割合(19.8%)を成人人口(104,013千人)に乗じて計算し、1人当たりの摂取量が推計されている。

たと仮定した場合、アンモニウムイオンとして 36.4 mg/L^{51} が生じると説明して 16.4 mg/L^{51} いる。

本委員会としては、(1)で算出した 1 人当たりのぶどう酒推定一日摂取量 (48.2 $\mathrm{mL}/\mathrm{L}/\mathrm{H}$)を踏まえ、ぶどう酒からのアンモニウムイオンの推定一日摂取量は、 $1.75~\mathrm{mg}/\mathrm{L}/\mathrm{H}$ と推計した。

本委員会としては、1.(2)を踏まえ、ぶどう酒から摂取される添加物「亜硫酸水素アンモニウム水」由来のアンモニウムイオン摂取量は、ヒトにおいて食事から産生される量と比較して無視できると判断した。(引用終わり)」(参照4)」

2.「亜硫酸塩等」の使用基準改正案を踏まえた摂取量

使用基準改正案(表 5)によれば、今般、二酸化硫黄としての残存量の改正が検討される食品は、清涼飲料水(ぶどう酒からアルコールを除去したもの及びこれにぶどう果汁(濃縮ぶどう果汁を含む。)を加えたものに限る。以下「規格基準改正対象食品」という。)及び規格基準改正対象食品に加えるぶどう果汁である。このうち、規格基準改正対象食品に加えるぶどう果汁は、これをそのまま人が摂取することはない。そこで、本委員会は、今般の使用基準改正に伴って増加する二酸化硫黄としての摂取量及びカリウムイオンの摂取量を求める上で、規格基準改正対象食品の摂取量を推計する必要があると考えた。なお、「亜硫酸水素アンモニウム水」はぶどう酒にのみ使用する添加物であり、アンモニア摂取量は今回の使用基準改正に影響を受けないことから、1.(3)のとおり、添加物評価書「亜硫酸水素アンモニウム水」のアンモニア摂取量に関する記載を現在の摂取量の項において引用するに留めた。

規格基準改正要請者は、規格基準改正対象食品の摂取量については説明しておらず、ノンアルコールワイン 52の販売数量については、2022 年食品マーケティング便覧 No.2 に記載されたフレーバー分類のうち、その他 53の 2020 年の販売額 (950 百万円) (参照 151) を基に、同年のノンアルコールワインの販売数量は 1,158.5 kL/年と推定している。(参照 3、152)

本委員会としては、上記の説明を踏まえ、規格基準改正対象食品のみではなく、 規格基準改正対象食品を含むノンアルコールワインの摂取量(下記(1))及びノ

_

 $^{^{51}}$ (18.04/99.11)×200 mg/L = 36.40 mg/L

^{52 「}マーケティングレポート」(2012年2月号)によると、「アルコールを1%未満に抑えるには、通常のワインを製造してからアルコールを除去する方法や、アルコールを生成せずに発酵させる方法などがあり、各社は独自の技術でノンアルコールワインを製造している。」と記載されている(参照150)。

本評価書では、ノンアルコールワインの用語は、通常のぶどう酒を製造してからアルコールを除去する方法や、アルコールを生成せずに発酵させる方法など、製法によらず全てのノンアルコールワインの総称として用いた。

⁵³ その他には、ワインテイストやハイボールテイスト等が含まれる。(参照 151)

ンアルコールワインからの摂取量(下記(2))について検討することとした。

(1) ノンアルコールワインの摂取量

厚生労働省(現消費者庁)は、ノンアルコールワインは20歳未満の者でも摂取し得るものの、通常、専ら20歳以上の者によって摂取されるものと考えられると説明している(参照2)。本委員会は、販売方法の実態も踏まえ(参照153)、ノンアルコールワインは20歳以上の者によって摂取されるものと仮定して、その摂取量を推計することとした。

我が国におけるノンアルコールワインの摂取量の推計に用いることができる知見は限られている。そこで、上記 2. にある規格基準改正要請者による年間販売数量の推定(2020年で1,158.5 kL/年)を用い、これを同年の20歳以上の人口(105,407千人)(参考154)で除した値(11.0 mL/人/年)を1日当たりに換算すると、その摂取量は 3.01×10^{-2} mL/人/日となる。

次に、ノンアルコールワインが 20 歳以上の者に広く平均的に摂取されるのか、あるいは、特定の集団によって摂取されるのかについて検討したところ、個々の摂取量にばらつきがあると考えられたが、この点に関する適当な知見を本委員会では得ることができなかった。しかしながら、規格基準改正要請者が「健康志向の高まりに対応するため」に、今般の規格基準の改正を要請するに至った旨を説明している(参考 3)ことからすると、飲酒習慣のある者を中心に嗜好されて摂取され、飲酒習慣のある者以外の者(20 歳以上)とでは摂取量に差が生じる可能性があると考えた。そこで、飲酒習慣のある者のみによって全てのノンアルコールワインが摂取されると仮定し、その割合(令和元年国民健康・栄養調査において 20.5%)(参照 149)を上記 20 歳以上の人口に乗じて計算した場合、その摂取量は 0.147 mL/人/日 54と推計された。

また、平成 17 年度~平成 19 年度食品摂取頻度・摂取量調査 55からノンアルコールワインの摂取者の割合を得ることができないか、本委員会において確認したところ、その「食品名」欄にノンアルコールワイン(あるいは、ワインテイスト飲料、脱アルコールワイン、アルコールフリーワイン等、ノンアルコールワインを指していると考えられる食品)は掲げられておらず、同調査からノ

⁵⁴ 規格基準改正要請者は、今般の使用基準改正が行われた場合、2026 年時点のノンアルコールワインの販売数量は 12,600 kL/年になるとの説明をしている (参照 3)。しかしながら、当該販売数量は、2026 年のノンアルコールワイン比率 (ノンアルコールワイン及びぶどう酒の販売数量の合計に占めるノンアルコールワインの販売数量の割合をいう。)を 3.65%と設定した上で計算されたものである。(参照 155)。本委員会は、当該ノンアルコールワイン比率が規格基準改正要請者の予測によるところが大きいこと及び 2026 年時点のノンアルコールワインの摂取者数に係る適当な知見が得られなかったことから、当該販売数量をノンアルコールワインの摂取量の推計に用いないこととした。

⁵⁵ 調査結果は、平成 22 年度食品摂取頻度・摂取量調査の特別集計業務報告書(参照 156) にまとめられている。

ンアルコールワインの摂取者の割合を得ることができなかったものの、本委員会は、ぶどうストレートジュース(天然果汁)、ぶどう濃縮還元ジュース、ぶどう 70%果汁入り飲料及びぶどう 10%果汁入り飲料の摂取者がノンアルコールワインも摂取していると推定し、これらの食品の摂取者の割合を求めたところ、20歳以上で3.23%56であった(参照157)。そこで、これらの食品の摂取者によって全てのノンアルコールワインが摂取されると仮定し、摂取者の割合を上記20歳以上の人口に乗じて計算した場合、ノンアルコールワインに相当する食品の摂取者におけるノンアルコールワインの摂取量は、20歳以上で0.932 mL/人/日と推計された。

以上より、本委員会は、ノンアルコールワインが 20 歳以上の全ての者によって摂取される可能性は考えにくいため、ノンアルコールワインの摂取量を 0.147 ~0.932 mL/人/日とした。

(2) ノンアルコールワインからの摂取量

① 二酸化硫黄

本委員会は、表 5 の使用基準改正案における「亜硫酸塩等」の二酸化硫黄としての最大残存量(0.35~g/kg)がノンアルコールワイン中に残存した場合を仮定し、これに上記(1)で推計したノンアルコールワインの摂取量($0.147\sim0.932~mL/$ 人/日)を乗じ、ノンアルコールワインからの「亜硫酸塩等」の摂取量を二酸化硫黄として、 $5.1\times10^{-2}\sim0.33~mg/$ 人/日 57 ($9.3\times10^{-4}\sim5.9\times10^{-3}~mg/kg$ 体重/日)と推計した。

② カリウムイオン

本委員会は、表 5 の使用基準改正案における「ピロ亜硫酸カリウム」の二酸化硫黄としての最大残存量(0.35~g/kg)がノンアルコールワイン中に残存した場合を仮定し、ノンアルコールワインに使用した「ピロ亜硫酸カリウム」由来のカリウムイオンの摂取量は、 $3.1\times10^{-2}\sim0.20~mg/$ 人/日($5.7\times10^{-4}\sim3.6\times10^{-3}~mg/kg$ 体重/日) 58 と推計した。

本委員会としては、1.(3)を踏まえ、ノンアルコールワインから摂取さ

85

 $^{^{56}}$ 平成 17 年度~平成 19 年度食品摂取頻度・摂取量調査において、ぶどうストレートジュース(天然果汁)、ぶどう濃縮還元ジュース、ぶどう 70%果汁入り飲料及びぶどう 10%果汁入り飲料の 20 歳以上の平均摂取量は 0.737 g/人/日、また、20 歳以上でこれらの食品を摂取する者の平均摂取量は 22.8 g/人/日である。(参照 157) 57 ノンアルコールワインの比重を 1 として換算した。

⁵⁸ I. 2及びⅡより、ピロ亜硫酸カリウムから生じるカリウムイオン及び二酸化硫黄の物質量の比は同じであるから、以下のとおり算出した。

[「]ピロ亜硫酸カリウム」由来のカリウムイオンの摂取量

⁼二酸化硫黄としての最大残存量(g/kg)×ノンアルコールワインの一日摂取量(mL/人/日)×カリウムイオンの式量/二酸化硫黄の分子量

 $^{=0.35\}times (0.147\sim0.932)\times39.0983/64.06=3.1\times10^{-2}\sim0.20\,\mathrm{mg/}$ / \exists

れる「ピロ亜硫酸カリウム」由来のカリウムイオン摂取量は、ヒトが食事から摂取する量と比較して無視できると判断した。

3. 摂取量推計等のまとめ

本委員会は、今回の「亜硫酸塩等」の使用基準改正案を踏まえた二酸化硫黄としての摂取量は、

・20 歳以上では、上記 1.(1)の現在の摂取量(4.7×10^{-2} mg/kg 体重/日)及び 2.(2)①のノンアルコールワインからの摂取量($9.3\times10^{-4}\sim5.9\times10^{-3}$ mg/kg 体重/日)を合計し、 $4.8\times10^{-2}\sim5.3\times10^{-2}$ mg/kg 体重/日 59

なお、20 歳以上の推計は、ぶどう酒及びノンアルコールワインが特定の集団に 嗜好されて摂取される可能性を考慮したものではあるが、当該特定の集団の平均 値であるので、個々人にあっては、当該摂取量を上回る量摂取する者がいると考える 60。

・1 歳以上 20 歳未満の者では、上記 1. (1) の現在の摂取量から 8.7×10^{-3} mg/kg 体重/日

となると判断した。

となると判断した。

また、今回の「亜硫酸塩等」の使用基準改正案を踏まえたカリウムイオンの摂取量は、ヒトが食事から摂取する量と比較して無視できると判断した。

_

⁵⁹ ノンアルコールワインには、現行、その 1 kg につき二酸化硫黄として 0.03 g 以上残存しないように「亜硫酸塩等」を使用しなければならないとの使用基準(表 5)の下、現に摂取され、当該摂取されたノンアルコールワインからの二酸化硫黄としての摂取量は、1.(1)で行った推計値に含まれていると考えられる。すなわち、2.(2)①で行った推計と重複した分があると考えられるので、当該重複分は過剰な推計となっている。

⁶⁰ 例えば、1.(1)の推計においてぶどう酒の摂取量として推定していた 48.2 mL/人/日を、ノンアルコールワインとして摂取すると仮定し、さらに、「亜硫酸塩等」は、その使用基準案で示された二酸化硫黄としての最大残存量(0.35 g/kg)の全てがノンアルコールワイン製品に残存すると仮定した場合、これらを乗じて、48.2 mL/人/日のノンアルコールワインのみから「亜硫酸塩等」由来の二酸化硫黄 0.306 mg/kg 体重/日を摂取する可能性があると推定される。

Ⅳ. 我が国及び国際機関等における評価

1. 我が国における評価

ア 2003 年7月の厚生労働省からの「亜硫酸ナトリウム」、「次亜硫酸ナトリウム」、「二酸化硫黄」、「ピロ亜硫酸カリウム」及び「ピロ亜硫酸ナトリウム」の使用基準改正(対象食品として乾燥カットポテト及び干しぶどうを追加するため、「乾燥マッシュポテト」を「乾燥じゃがいも」に変更する(二酸化硫黄としての最大残存量は 0.50 g/kg 未満)とともに、干しぶどうにあってはその 1 kg につき 1.5 g 以上残存しないようにする旨を追加する。)に係る食品健康影響評価の依頼(参照 158)に対して、食品安全委員会は、同年 9 月に以下のように通知している。(参照 159)

「亜硫酸塩類 61について薬事・食品衛生審議会食品衛生分科会毒性・添加物合同部会において行われた「その安全性について現段階で新たな対応をとる必要はないと考えられる」との評価の結果は、当委員会として妥当と考える。」

- イ 2020 年2月の厚生労働省からの「亜硫酸水素アンモニウム水」の新規指定 及び規格基準設定に係る食品健康影響評価の依頼に対して、食品安全委員会 は、二酸化硫黄及び亜硫酸塩を被験物質とした体内動態、遺伝毒性、急性毒 性、反復投与毒性、発がん性、生殖発生毒性、ヒトにおける知見等を評価し、 同年12月に「亜硫酸水素アンモニウム水が添加物として適切に使用される場 合、安全性に懸念がないと考えられ、許容一日摂取量を特定する必要はない。」 と通知している。(参照4)
- ウ 添加物評価書「亜硫酸水素アンモニウム水」において、アンモニウムイオ ンについては以下のとおり評価している。

「アンモニウムイオンについては、過去に評価されており、その後、新たな知見は認められていないことから、体内動態及び毒性に関する検討は行わなかったが、添加物「亜硫酸水素アンモニウム水」由来のアンモニウムイオン摂取量は、ヒトにおいて食事から産生される量と比較して無視できることから、添加物として適切に使用される場合、添加物「亜硫酸水素アンモニウム水」に由来するアンモニウムイオンは安全性に懸念がないと判断した。(引用終わり)」(参照4)

2. 国際機関等における評価

(1) JECFA における評価

⁶¹ 亜硫酸ナトリウム、次亜硫酸ナトリウム、二酸化硫黄、ピロ亜硫酸ナトリウム及びピロ亜硫酸カリウム。本 評価書における亜硫酸塩等と同義。

JECFA において、二酸化硫黄及び亜硫酸塩類に関する評価がなされており、 それぞれ次のように取りまとめられている。

1973 年の第 17 回会合において、二酸化硫黄及び亜硫酸塩類 62を評価した結果、二酸化硫黄及び亜硫酸塩類グループとしての ADI を、二酸化硫黄として 0 ~0.7 mg/kg 体重/日と設定した。(参照 160、161)

その後、1976 年に亜硫酸水素カルシウム、1978 年にチオ硫酸ナトリウム、1983 年に亜硫酸水素カリウムがグループ ADI に加えられた。(参照 162、30、163)

1986 年の第 30 回会合において、二酸化硫黄及び亜硫酸塩類 ⁶³を評価した結果、以前に設定した二酸化硫黄及び亜硫酸塩類グループとしての ADI(二酸化硫黄として 0~0.7 mg/kg 体重/日)が維持された。また、亜硫酸塩類に敏感な人に対する影響について検討を行った結果、①過敏症の消費者を守るために適切なラベル表示を推奨する、②高度で急激な亜硫酸塩類の摂取について懸念を表明する、③他に適切な代替保存方法がある場合はその使用を推奨するとした。(参照 90)

1998 年の第 51 回会合において、二酸化硫黄及び亜硫酸塩類 64を評価した結果、以前に設定した二酸化硫黄及び亜硫酸塩類グループとしての ADI (二酸化硫黄として 0~0.7 mg/kg 体重/目) が維持された。また、それらの摂取量推計が行われた結果、各国ごとの使用基準の最高量を用いる摂取量推計では、ADI を下回ったが、GSFA 草案の最高使用量や食品群の範囲を用いる摂取量推計では、ADI を上回った。この点については、GSFA 草案に収載された食品群の範囲が各国より多く、特定の食品群の使用量が一般的に各国の最高使用量より高いためとされている。(参照 99、164、165)

2008 年の第 69 回会合において、二酸化硫黄及び亜硫酸塩類 65のばく露評価が行われた結果、一般集団では ADI の範囲内であるが、高摂取者では ADI を超過しているとされた。この点については、いくつかの推計が一日のみの摂取量調査結果に基づいており、まれに摂取する食品について過大推計となることが知られていること、国ごとに食品への使用方法が異なることを指摘しつつ、ADI を超過しないよう代替の保存方法に対する研究の推奨や食品への二酸化硫黄及び亜硫酸塩類の使用量の減少等を考慮すべきとされている。(参照 166)

添加物評価書「亜硫酸水素アンモニウム水」において、「亜硫酸水素アンモニ

⁶² ピロ亜硫酸カリウム、ピロ亜硫酸ナトリウム、亜硫酸ナトリウム及び亜硫酸水素ナトリウム

⁶³ ピロ亜硫酸カリウム、ピロ亜硫酸ナトリウム、亜硫酸ナトリウム、亜硫酸水素ナトリウム、亜硫酸水素カルシウム、亜硫酸水素カリウム及びチオ硫酸ナトリウム

⁶⁴ ピロ亜硫酸カルシウム、ピロ亜硫酸カリウム、ピロ亜硫酸ナトリウム、亜硫酸カルシウム、亜硫酸カリウム、亜硫酸ナトリウム、亜硫酸水素カルシウム、亜硫酸水素カリウム、亜硫酸水素ナトリウム及びチオ硫酸ナトリウム

ウム水」の JECFA における評価については、引用のとおりとしている。

「亜硫酸水素アンモニウム水の安全性評価は確認できなかった。(引用終わり)」(参照 4)

(2)米国における評価

1976年に米国実験生物学会連合 (FASEB) による二酸化硫黄及び亜硫酸塩類 66の評価が行われた結果、現在の使用量や使用方法で、公衆への有害影響を示す合理的根拠はないとしている。(参照 167)

1985年に FASEB による二酸化硫黄及び亜硫酸塩類 66 の評価が行われた結果、大部分の集団に対しては、現在の使用量や使用方法で、公衆への有害影響を示す合理的根拠はないが、消費量の増加が有害影響を及ぼすかは判断できないとしている。また、亜硫酸塩類に敏感な集団に対しては、現在の使用量や使用方法で、予測できない重症度の有害影響を示唆又は疑う情報があるとしている。(参照 168)

添加物評価書「亜硫酸水素アンモニウム水」において、「亜硫酸水素アンモニウム水」の米国における評価については、引用のとおりとしている。

「亜硫酸水素アンモニウム水の安全性評価は確認できなかった。(引用終わり)」(参照4)

(3) 欧州における評価

欧州食品科学委員会 (SCF) は、1994 年に二酸化硫黄及び亜硫酸塩類 36 の評価を行い、二酸化硫黄及び亜硫酸塩類のグループとしての ADI を、二酸化硫黄として 0~0.7 mg/kg 体重/日とした。(参照 169)

また、欧州食品安全機関 (EFSA) 専門家パネルは、2016 年に二酸化硫黄及 び亜硫酸塩類 36 の再評価を行い、現行の二酸化硫黄及び亜硫酸塩類としてのグループ ADI (二酸化硫黄として $0\sim0.7$ mg/kg 体重/日) を適当なものとして維持するが、データベースが改善されるまでの暫定的なものとみなすことが望ましいと結論付け、この暫定グループ ADI を再評価することを勧告した。(参照 23)

さらに、EFSA 専門家パネルは、2022 年に二酸化硫黄及び亜硫酸塩類 36 の再評価を行い、利用可能な毒性データベースは ADI を導出するには不十分であると考え、現行の暫定グループ ADI を撤回した。これらの食品添加物のリスク評価には、ばく露マージン(MOE)法が適切であると考え、Ozturk ら(2011)

(参照 103) の視覚誘発電位の潜時の延長に基づき、BMDL を従来の基準値である 70 mg/kg 体重/日(二酸化硫黄として)よりも低い値である 38 mg/kg 体重/日(二酸化硫黄として)と推定し、また、MOE の評価には評価係数 80 が適用

された 67。二酸化硫黄の食事ばく露を最も代表すると考えられるシナリオを用 いた場合、95 パーセンタイルの範囲の最大値でのMOE は、 $10\sim17$ 歳の集団を 除く全集団 68において、80 以下であった。最大許容値から推定した食事による ばく露を用いた場合、平均値の範囲の最大値での MOE は全集団において、ま た、95 パーセンタイルの範囲の最小値及び最大値での MOE はほとんどの集団 において、いずれも80以下であった。これらのことから、いずれの食事ばく露 シナリオにおいても、安全性に懸念があると結論付けた。また、利害関係事業 者から提出されたデータに基づき、二酸化硫黄及び亜硫酸塩類 36 に存在する有 害元素のリスク評価を行い、ヒ素、鉛、水銀の EU 規格の上限値の引き下げ、 カドミウムの上限値を導入すべきであると結論付けた。(参照 47)

添加物評価書「亜硫酸水素アンモニウム水」において、「亜硫酸水素アンモニ ウム水」の欧州における評価については、引用のとおりとしている。

「亜硫酸水素アンモニウム水の安全性評価は確認できなかった。(引用終わ り)」(参照4)

(4) オーストラリア及びニュージーランドにおける評価

オーストラリア・ニュージーランド食品局(ANZFA)は、2000年に二酸化 硫黄のカットアボカドへの使用に関して評価を行った結果、亜硫酸塩類の摂取 量への影響は少ないとしたものの、敏感な人に対するリスクを考慮し、申請を 却下している。(参照 170)

オーストラリア・ニュージーランド食品基準機関(FSANZ)は、2014年に アワビの缶詰の製造における次亜硫酸ナトリウムの使用に関して評価を行った。 アワビの缶詰の製造過程で、次亜硫酸イオン($S_2O_4^2$)は分解を受け、他の認可 された亜硫酸塩類 69と同じ化学種が生成され、主に亜硫酸イオン(SO₃2)の形 態であり、亜硫酸水素イオン(HSO_3)としての割合はわずかである。そのた め、ばく露評価では、最終的な缶詰製品には、残留する次亜硫酸イオンは検出 されないことから、アワビ缶詰の製造に次亜硫酸ナトリウムを使用しても、新 たな食品添加物への食事ばく露や亜硫酸塩類への食事ばく露が増加することは

⁶⁷ EFSA (2022) は、評価係数 80 について、MOE が 80 以上の場合、安全性の懸念は生じないことを意味す るとしている。また、EFSA(2022)は、本評価係数80の根拠を、以下の不確実係数の積と説明している。 <種間不確実係数>

種間トキシコダイナミックス不確実係数(デフォルト) 2.5

種間トキシコキネティクス不確実係数(デフォルト) 4

<種内不確実係数>

種内トキシコダイナミックス不確実係数(デフォルト) 3.16

種内トキシコキネティクス不確実係数 1.23 (ヒトの VEP 分布の 0.3/99.7 パーセンタイル値から算出) <追加不確実係数>2(亜慢性試験(35日)のため)

^{68 12} 週から 11 か月児、12~35 か月児、3~9 歳、18~64 歳及び 65 歳以上

⁶⁹ 二酸化硫黄、亜硫酸ナトリウム、亜硫酸水素ナトリウム、ピロ亜硫酸ナトリウム、ピロ亜硫酸カリウム、亜 硫酸カリウム及び亜硫酸水素カリウム

ないとしている。また、ハザード評価では、1973 年に JECFA が設定した二酸 化硫黄及び亜硫酸塩類 62 のグループ ADI(二酸化硫黄として 0~0.7 mg/kg 体 重/日)を変更できるような新しい適切な証拠はないとしている。これらを踏まえ、アワビの缶詰の製造における次亜硫酸ナトリウムの使用は、既にアワビ缶詰への使用が認められている亜硫酸塩類を超える公衆衛生と安全性の問題を特定することはできないと結論付けた。また、亜硫酸塩類に敏感な消費者(一部の喘息患者等)の問題に対処するため、食品に 10 mg/kg 以上の濃度で添加された場合、亜硫酸塩類は原材料リストのラベルに表示しなければならず、この表示要件は、亜硫酸塩類に敏感な消費者に、これらの食品を避けるために必要な情報を提供する。この表示要件は、アワビの缶詰に使用される次亜硫酸ナトリウムにも適用される。(参照 171、172)

また、2017年にぶどう酒製造に関する新規の加工助剤として亜硫酸水素アンモニウムの評価を行った。その結果、現行のJECFAの二酸化硫黄及び亜硫酸塩類としてのグループADIを適切70と判断している。また、ぶどう酒製造における加工助剤としての亜硫酸水素アンモニウム由来の亜硫酸塩のばく露量の変化は無視できると予測されるため、ばく露評価は行わなかった。これらを踏まえ、ぶどう酒製造における加工助剤としての亜硫酸水素アンモニウムの使用については、公衆衛生及び安全性に係る懸念は認められなかったと結論付けた。(参照173)

-

⁷⁰ FSANZ (2017) は、現行の JECFA の二酸化硫黄及び亜硫酸塩類としてのグループ ADI については、低す ぎる可能性があるとしている。

V. 食品健康影響評価

「亜硫酸塩等」は、従来、食品に酸化防止剤、保存料、漂白剤の用途で使用されている。今般の食品健康影響評価の依頼は、ぶどう酒からアルコールを除去した清涼飲料水(ノンアルコールワイン)においてもぶどう酒と同程度の「亜硫酸塩等」を使用できるようにするための規格基準の改正に係るものである。

亜硫酸塩等は、水中では二酸化硫黄、亜硫酸水素イオン及び亜硫酸イオンの平衡状態にあり、主に二酸化硫黄が酸化防止等の効果を持つ。また、使用基準で二酸化硫黄としての残存量が定められている。「亜硫酸塩等」の食品健康影響評価を実施するにあたり、二酸化硫黄としてのADIの特定を検討することとなった。

添加物「亜硫酸水素アンモニウム水」については、食品安全委員会において 2020 年 12 月に食品健康影響評価を取りまとめた。亜硫酸水素アンモニウムは、水中における平衡状態や、二酸化硫黄が活性本体であることが亜硫酸塩等と共通であり、また、「亜硫酸水素アンモニウム水」は二酸化硫黄としての残存基準があることにおいて「亜硫酸塩等」と共通であること等から、「亜硫酸塩等」と「亜硫酸水素アンモニウム水」をグループとして評価を行うことが適当と判断した。

「亜硫酸塩等」及び「亜硫酸水素アンモニウム水」については、亜硫酸塩等及び亜硫酸水素アンモニウムは、二酸化硫黄、亜硫酸水素イオン及び亜硫酸イオンの平衡状態となる又は硫酸イオンを生じることを踏まえ、二酸化硫黄、亜硫酸ナトリウム、次亜硫酸ナトリウム、ピロ亜硫酸カリウム、ピロ亜硫酸ナトリウム、亜硫酸水素ナトリウム及び亜硫酸水素アンモニウムの安全性に係る知見を基に、グループとして安全性に関する検討を総合的に行うこととした。

ピロ亜硫酸カリウムから生じるカリウムイオンについては、添加物評価書「DL -酒石酸カリウム」(2020 年 9 月食品安全委員会決定)において、体内動態及び毒性に係る知見が検討されており、その結果、安全性に懸念を生じさせるような知見は認められていない。また、添加物評価書「フェロシアン化カリウム」(2022年2月食品安全委員会決定)では、「DL-酒石酸カリウム」の後、新たな知見は認められていないとされている。さらに、その後、新たな知見は認められていないため、本評価書では、体内動態及び毒性の検討は行わないこととした。また、ノンアルコールワインから摂取される「ピロ亜硫酸カリウム」由来のカリウムイオン摂取量は、ヒトが食事から摂取する量と比較して無視できると判断した。

添加物評価書「亜硫酸水素アンモニウム水」において、「亜硫酸水素アンモニウム水」から生じるアンモニウムイオンについては、以下のとおり評価している。

「アンモニウムイオンについては、過去に評価されており、その後、新たな知見は認められていないことから、体内動態及び毒性に関する検討は行わなかったが、添加物「亜硫酸水素アンモニウム水」由来のアンモニウムイオン摂取量は、ヒトにおいて食事から産生される量と比較して無視できることから、添加物として適切に使用される場合、添加物「亜硫酸水素アンモニウム水」に由来するアン

モニウムイオンは安全性に懸念がないと判断した。(引用終わり)」(参照4)

体内動態については、「亜硫酸塩等」及び「亜硫酸水素アンモニウム水」の添加された食品を摂取すると二酸化硫黄のガスが遊離され、二酸化硫黄のガスは消化液に溶けやすく、二酸化硫黄、亜硫酸水素イオン及び亜硫酸イオンは連続した平衡状態となる。胃内の低いpHでは二酸化硫黄が優勢であり、幽門通過後は腸管内pHの上昇に伴い亜硫酸イオンが優勢となる。吸収された亜硫酸イオンは、肝臓のSOX などによって硫酸イオンに酸化されるか、三酸化硫黄ラジカルの形成を通じて硫酸イオンの形成に至る経路により代謝される。ラットでは、ウサギ又はサルと比較してSOX活性が高く、ヒトと比較して約10~20倍のSOX活性が肝臓で示されている。このため、ラットでは、ウサギ又はサルと比較して亜硫酸イオンのクリアランスが大きく、約3~5倍の亜硫酸イオンのクリアランスが示されている。また、亜硫酸塩の摂取後に検出された タスルホン酸の半減期は短く、蓄積性は低い。さらに、経口投与された二酸化硫黄及び亜硫酸塩は、その大半が硫酸として速やかに尿中や糞便中に排泄されると考えた。

遺伝毒性については、「亜硫酸塩等」及び「亜硫酸水素アンモニウム水」を食品添加物として通常摂取する場合において、亜硫酸塩等及び亜硫酸水素アンモニウムには、生体にとって特段問題となる遺伝毒性はないと判断した。

急性毒性、反復投与毒性、生殖発生毒性等の試験結果を検討した結果、ブタ 48 週間経口投与試験(Til ら (1972))において、ピロ亜硫酸ナトリウムの 1.0%以上の投与群で軽度の胃及び食道の所見が認められたことから、NOAEL はこの報告の 0.5%投与群から算出した 71 mg/kg 体重/日 (二酸化硫黄として) と判断した。

発がん性については、マウス2年間発がん性試験(Tanaka ら(1979))及びラット2年間反復投与毒性・生殖毒性・発がん性併合試験(Til ら(1972))において、発がん性は認められないと判断した。

神経毒性については、EFSA が 2022 年に二酸化硫黄及び亜硫酸塩類の再評価を行い、Ozturk ら(2011)の視覚誘発電位の潜時の延長に基づき、BMDL を従来の基準値である 70 mg/kg 体重/日(二酸化硫黄として)よりも低い値である 38 mg/kg 体重/日(二酸化硫黄として)と推定している。しかしながら、視覚系の構造及び機能に多くの種差があり、アルビノラットで示唆された視神経毒性の所見をヒトへ外挿することが困難であることから、視神経毒性に係る NOAEL 等を判断することは適切でないと考えた。

以上のことから、本委員会としては、亜硫酸塩等及び亜硫酸水素アンモニウムの最小の NOAEL は、71 mg/kg 体重/日(二酸化硫黄として)と判断した。

ヒトにおける知見については、アレルギー性疾患患者等における亜硫酸塩等及び亜硫酸水素アンモニウムによるアレルギー様反応誘発の可能性が否定できないと考えられるが、最低誘発用量を含めた量的な議論をすることは困難であった。しかし、気管支喘息患者においては数~10%程度の者が亜硫酸塩に過敏に反応したとする複数の報告があり、二酸化硫黄及び亜硫酸塩による過敏性反応の発症機序等に関する新たな知見の集積を注視すべきと考えた。

現在の「亜硫酸塩等」及び「亜硫酸水素アンモニウム水」由来の二酸化硫黄と しての摂取量は、令和5年度のマーケットバスケット方式摂取量調査に基づき、 20 歳以上の飲酒習慣のある者では 4.7×10^{-2} mg/kg 体重/日と推計した。今回の使 用基準改正案を踏まえたノンアルコールワインからの二酸化硫黄としての摂取量 は、飲酒習慣のある者及びぶどうストレートジュース等の摂取者から算出したノ ンアルコールワインの推定一日摂取量(0.147~0.932 mL/人/日)と、添加物「亜 硫酸塩等」の使用基準案の最大量(0.35 g/kg)に基づき、それが全て残存した場 合を仮定し、9.3×10⁻⁴~5.9×10⁻³ mg/kg 体重/日と推計した。上述の二つの摂取 量を合計し、今回の使用基準改正案を踏まえた二酸化硫黄としての摂取量は、20 歳以上では、4.8×10⁻²~5.3×10⁻²mg/kg 体重/日となると推計した。なお、この 推計値は、ぶどう酒及びノンアルコールワインが特定の集団に嗜好されて摂取さ れる可能性を考慮して算出した値ではあるが、過小な見積りを避けるために、こ の推計値を20歳以上の摂取量と仮定したものである。一方、1歳以上20歳未満に おける現在の「亜硫酸塩等」及び「亜硫酸水素アンモニウム水」由来の二酸化硫 黄としての摂取量は、マーケットバスケット方式摂取量調査に基づき、8.7×10⁻³ mg/kg 体重/日と推計した。

本委員会は、亜硫酸塩等及び亜硫酸水素アンモニウムには遺伝毒性がなく、ADI を設定することは可能であると判断した。また、アルビノラットで示唆された視覚系への影響に関して、視神経毒性に係る NOAEL 等を判断することは適切でないと考えるものの、神経毒性についてヒトへの影響の懸念があり、無視できないものであると考えた。そのため、「亜硫酸水素アンモニウム水」について、毒性影響が重篤でない等の理由から ADI を特定する必要はないと判断した過去の評価(2020 年 12 月食品安全委員会決定)とは異なり、亜硫酸塩等及び亜硫酸水素アンモニウムについては ADI の特定が適当であると判断した。

本委員会としては、亜硫酸塩等及び亜硫酸水素アンモニウムの最小の NOAEL 71 mg/kg 体重/日 (二酸化硫黄として) を根拠として、安全係数 100 で除した

0.71 mg/kg 体重/日(二酸化硫黄として)を添加物「亜硫酸塩等」及び「亜硫酸水素アンモニウム水」のグループとしての ADI とした。

グループ ADI 0.71 mg/kg 体重/日 (二酸化硫黄として)

(ADI 設定根拠資料) 48 週間反復投与試験

(動物種) ブタ

(投与方法) 混餌投与

(NOAEL の根拠所見) 胃及び食道の上皮過形成等

(NOAEL) 71 mg/kg 体重/日 (二酸化硫黄として)

(安全係数) 100

なお、「亜硫酸塩等」及び「亜硫酸水素アンモニウム水」による視神経障害等の視覚系への影響はヒトにおいて現時点では報告されていないが、動物における視神経毒性の発現に関する詳細情報、背景メカニズム及びヒトへの外挿可能性等や、さらに、ヒトにおける視覚系への影響等に関する新たな知見の集積を注視すべきと考えた。

<別紙:略称>

略称	名称等
ALT	Alanine aminotransferase: アラニンアミノトランスフェラーゼ
ANZFA	Australia New Zealand Food Authority: オーストラリア・ニュージー
	ランド食品局
BMDL	Benchmark Dose Lower Confidence Limit:ベンチマークドーズの信頼
	区間の下限値
CHL	Chinese Hamster Lung: チャイニーズハムスター肺
СНО	Chinese Hamster Ovary: チャイニーズハムスター卵巣
DMPO	5,5-dimethyl-1-pyrroline-1-oxide: 5,5-ジメチル-1-ピロリン-1-オキシド
EFSA	European Food Safety Authority: 欧州食品安全機関
EU	European Union:欧州連合
FASEB	Federation of American Societies for Experimental Biology: 米国実験生物学会連合
FEV_1	Forced expiratory volume in one second: 一秒量
FSANZ	Food Standards Australia New Zealand:オーストラリア・ニュージー
	ランド食品基準機関
GMP	Good Manufacturing Practice:適正製造規範
GRAS	Generally Recognized as Safe: 一般的に安全とみなされる
GSFA	Codex General Standard for Food Additives: 食品添加物に関するコー
	デックス一般規格
JECFA	Joint FAO/WHO Expert Committee on Food Additives: FAO/WHO 合同食品添加物専門家会議
MNNG	1-Methyl-3-nitro-1-nitrosoguanidine: N-メチル-N'-ニトロ-N-ニトロ
	ソグアニジン
MOE	Margin of Exposure : ばく露マージン
NCE	Normochromatic erythrocytes:正染性赤血球
NOEL	No-Observed-Effect Level:無作用量
OECD	Organization for Economic Co-operation and Development:経済協力
	開発機構
PCE	Polychromatic erythrocyte:多染性赤血球
PMA	Phorbol myristate acetate:ホルボールミリステートアセテート
SCE	Sister Chromatid Exchange:姉妹染色分体交換
SCF	Scientific Committee for Food:欧州食品科学委員会
SOX	Sulfite oxidase: 亜硫酸オキシダーゼ
TMDI	Theoretical Maximum Daily Intake:理論的最大一日摂取量

<参照>

1 食品衛生法施行規則, 昭和 23 年厚生省令第 23 号

- ² 厚生労働省:「亜硫酸塩等」の食品安全基本法第24条に基づく食品健康影響評価について, 第871回食品安全委員会, 2022
- 3 日本アルコールフリー飲料有限会社: 亜硫酸ナトリウム・次亜硫酸ナトリウム・ 二酸化硫黄・ピロ亜硫酸ナトリウム及びピロ亜硫酸カリウムの使用基準改正に関 する概要書, 2022
- 4 食品安全委員会:添加物評価書「亜硫酸水素アンモニウム水」. 2020年12月
- ⁵ 上原 陽一: 化学物質安全性データブック (改訂増補版), 株式会社オーム社, 1997: 778-9
- 6 厚生労働省,消費者庁:第10版食品添加物公定書,2024;512,911-2,1269-70
- 7 川西 徹, 穐山 浩, 河村 葉子, 佐藤 恭子:第9版 食品添加物公定書解説書. 廣川書店, 2019; D187-91, 1005-8, 1853-7
- 8 長倉 三郎, 井口 洋夫, 江沢 洋, 岩村 秀, 佐藤 文隆, 久保 亮五:岩波理化学 辞典 第 5 版, 岩波書店, 2010;527
- ⁹ Divol B, Toit MD, and Duckitt E: Surviving in the presence of sulphur dioxide: strategies developed by wine yeasts. Appl Microbiol Biotechnol, 2012; 95: 601-13
- 10 谷村 顕雄, 棚元 憲一:第 8 版 食品添加物公定書解説書, 廣川書店, 2007; D-1396-1400
- 11 岩野 貞雄:ワイン事典, 柴田書店, 1979; 32-33, 326-9
- 12 吉沢 淑, 石川 雄章, 蓼沼 誠, 長澤 道太郎, 永見 憲三: 醸造・発酵の食品事典, 朝倉書店, 2002; 271-2, 276
- 13 食品衛生法施行規則及び乳及び乳製品の成分規格等に関する省令の一部を改正する省令, 昭和61年厚生省令第53号
- ¹⁴ CAC (Codex Alimentarius Commission): GENERAL STANDARD FOR FOOD ADDITIVES, CODEX STAN 192-1995, Revision 2019; 17, 43, 245-7, 263-6
- 15 厚生労働省: 食品添加物食品分類システム Codex Stan 192-1995 Annex B, 2013
- FDA (US Food and Drug Administration): 21CFR (Code of Federal Regulations title 21) Part 182, §182.3862 Sulfur dioxide, §182.3798 Sodium sulfite, §182.3739 Sodium bisulfite, §182.3766 Sodium metabisulfite, §182.3616 Potassium bisulfite, §182.3637 Potassium metabisulfite, 2018; 485-6
- ¹⁷ TTB (US Alcohol and Tobacco Tax and Trade Bureau): 27 CFR (Code of Federal Regulations title 27) Part 4, §4.22 Blends, cellar treatment, alteration of class or type, 2018; 20-1
- 18 Trinchero Family Estates 社生產責任者説明資料 2011.5.19(要請者作成資料)
- ¹⁹ EU (European Union): REGULATION (EC) No 1333/2008 of the European Parliament of the Council of 16 December 2008 on food additives. Official Journal of the European Union 2008; L 354
- ²⁰ FSANZ (Food Standards Australia New Zealand): Australia New Zealand Food Standards Code Schedule 15 Substances that may be used as food additives, F2017C00331, 2017
- ²¹ FSANZ (Food Standards Australia New Zealand): Australia New Zealand Food Standards Code Standard 1.3.1 Food additives, F2017C00312, 2017
- ²² FSANZ (Food Standards Australia New Zealand): Australia New Zealand Food

- Standards Code Standard 4.5.1 Wine Production Requirements (Australia only), F2017C01001, 2017
- ²³ EFSA (European Food Safety Authority) Panel on Food Additives and Nutrient Sources Added to Food(ANS): Scientific Opinion on the Re-evaluation of Sulfur Dioxide (E 220), Sodiumsulfite (E 221), Sodium Bisulfite (E 222), Sodium Metabisulfite (E 223), Potassium Metabisulfite (E 224), Calcium Sulfite (E 226), Calcium Bisulfite (E 227) and Potassium Bisulfite (E 228) as Food Additives. EFSA Journal 2016; 14 (4): 4438-588
- ²⁴ Davidson PM, Sofos JN, Branen AL: Antimicrobials in food. CRC Press; 2004; 3:143-67
- ²⁵ OECD SIDS Sodium Dithionite 2004 3.1.1
- ²⁶ 日医工株式会社:デトキソール®静注液 2 g. 2022 年 4 月改定 (第 4 版)
- 27 小川 桂一郎、松尾 基之ら:化学基礎,東京書籍株式会社,2022;134
- ²⁸ 厚生労働省:食品健康影響評価に係る補足資料の提出について,健生食基発 0219 第1号別添1令和6年2月19日付け厚生労働省食品基準審査課長通知
- ²⁹ OECD SIDS Sodium Dithionite 2004 3.1.5
- ³⁰ JECFA (Joint FAO/WHO Expert Committee on Food Additives): Evaluation of certain food additives and contaminants. Twenty-second report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organ Tech Rep Ser 631, 1978
- 31 食品安全委員会:添加物評価書「DL-酒石酸カリウム」. 2020年9月
- 32 食品安全委員会:添加物評価書「フェロシアン化カリウム」. 2022年2月
- ³³ Taylor SL, Higlay NA, and Bush RK: Sulfites in foods: Uses, analytical, methods, residues, fate, exposure assessment, metabolism, toxicity, and hypersensitivity. Advances in food research, 1986; 30: 21-30
- Wedzicha BL, and Kaputo MT: Melanoidins from glucose and glycine: composition, characteristics and reactivity towards sulphite ion. Food Chemistry, 1992; 43: 359-67
- ³⁵ 戸塚 昭, 東條 一元, 清水 健一, 後藤 奈美, 小林 弘憲, 伊藤 和秀ら: 新ワイン学. 株式会社ガイアブックス, 2018:1-3
- Walker R, Mendoza-Garcia MA, Quattrucci E and Zerilli M: Metabolism of 3-deoxy-4-sulphohexosulose, a reaction product of sulphite in foods, by rat and mouse. Food and Chemical Toxicology, 1983; 21: 291-7
- ³⁷ Walker R, Mendoza-Garcia MA, Ioannides C: Acute toxicity of 3-deoxy-4-sulphohexosulose in rats and mice, and in vitro mutagenicity in the ames test. Fd Chem Toxci, 1983; 299-303
- ³⁸ Gibson WB and Strong FM: Metabolism and elimination of sulphite by rats, mice and monkeys. Food Cosmet Toxicol, 1973; 11: 185-98
- Bhaghat B and Lockett MF: The absorption and elimination of metabisulphite and thiosulphate by rats. Journal of Pharmacy and Pharmacology, 1960; 12: 690-4
- ⁴⁰ Gunnison AF and Farruggella TJ: Preferential S-sulfonate formation in lung and aorta. Chem Biol Interact, 1979; 25: 271-7
- ⁴¹ Yokoyama E, Yoder RE, Frank NR: Distribution of ³⁵S in the blood and its excretion in urine in dogs exposed to ³⁵SO₂. Archives of Environmental Health, 1971; 22: 389-95

- ⁴² Gause EM and Barker M: Interaction of inhaled sulfur dioxide with mucus glycoproteins. Proc West Pharmacol Soc, 1978; 21: 161-6
- ⁴³ Gunnison A F, Zaccardi J, Dulak L, and Chiang G: Tissue distribution of s-sulfonate metabolites following exposure to sulfur dioxide. Environmental Research, 1981; 24: 432-43
- ⁴⁴ Gunnison AF: Sulphite toxicity: a critical review of in vitro and in vivo data. Food Cosmet Toxicol, 1981; 19: 667-82
- ⁴⁵ Gunnison AF and Palmes ED: Species variability in plasma S-sulfonate levels during and following sulfite administration. Chem Biol Interact, 1978; 21: 315-29
- ⁴⁶ Gibson CR, Gleason A and Messina E, 2021. Measurement of total liver blood flow in intact anesthetized rats using ultrasound imaging. Pharmacology Research & Perspectives, 9, e00731.
- EFSA (European Food Safety Authority) Panel on Food Additives and Nutrient Sources Added to Food(ANS) Follow-up of the re-evaluation of sulfur dioxide (E 220), sodium sulfite (E 221), sodium bisulfite (E 222), sodium metabisulfite (E 223), potassium metabisulfite (E 224), calcium sulfite (E 226), calcium bisulfite (E 227) and potassium bisulfite (E 228). EFSA Journal 2022; 20 (11): 1-139
- ⁴⁸ Gunnison AF, Bresnahan CA and Palmes ED: Gunnison AF, Bresnahan CA and Palmes ED, 1977. Comparative sulfite metabolism in the rat, rabbit, and rhesus monkey. Toxicology and Applied Pharmacology, 1977; 42: 99-109
- ⁴⁹ Wever J: Appearance of sulphite and S-sulphonates in the plasma of rats after intraduodenal sulphite application. Food Chem Toxicol, 1985; 23: 895-8
- 50 Sun YP, Cotgreave I, Lindeke B, and Moldéus P: The metabolism of sulfite in liver. Stimulation of sulfate conjugation and effects on paracetamol and allyl alcohol toxicity. Biochem Pharmacol, 1989; 38: 4299-305
- Gunnison AF and Palmes ED: A model for the metabolism of sulfite in mammals. Toxicol Appl Pharmacol, 1976; 38: 111-26
- ⁵² Gunnison AF and Palmes ED: S-sulfonates in human plasma following inhalation of sulfur dioxide. Am Ind Hyg Assoc J, 1974; 35: 288-91
- ⁵³ Constantin D, Mehrotra K, Jernström B, Tomasi A, and Moldéus P: Alternative pathways of sulfite oxidation in human polymorphonuclear leukocytes. Pharmacol Toxicol, 1994; 74: 136-40
- ⁵⁴ Constantin D, Bini A, Meletti E, Moldeus P, Monti D, and Tomasi A: Age-related differences in the metabolism of sulphite to sulphate and in the identification of sulphur trioxide radical in human polymorphonuclear leukocytes. Mech Ageing Dev, 1996; 88: 95-109
- Savić M, Siriski-Sasić J, and Djulizibarić D: Discomforts and laboratory findings in workers exposed to sulfur dioxide. Int Arch Occup Environ Health, 1987; 59: 513-8
- Doniger J, O'Neill R, and DiPaolo JA: Neoplastic transformation of Syrian hamster embryo cells by bisulfite is accompanied with a decrease in the number of functioning replicons. Carcinogenesis, 1982; 3: 27-32
- ⁵⁷ Hayatsu H and Miura A: The mutagenic action of sodium bisulfite. Biochem Biophys Res Commun, 1970; 39: 156-60
- ⁵⁸ Mukai F, Hawryluk I, and Shapiro R: The mutagenic specificity of sodium

- bisulfite. Biochem Biophys Res Commun, 1970; 39: 983-8
- ⁵⁹ Litton Bionetics: Mutagenic evaluation of compound FDA 73-43 sodium sulfite. Submitted to FDA, NTIS PB-245488, 1975
- ⁶⁰ SRI (Stanford Research Institute) International: Microbial mutagenesis testing of substances compound report, F76-003, Sodium bisulfite. Prepared for FDA, NTIS PB-89-193676, 1978
- ⁶¹ SRI (Stanford Research Institute) International: Microbial mutagenesis testing of substances compound report, F76-004, Sodium meta-bisulfite. Prepared for FDA, NTIS PB-89-193684, 1978
- 62 Mallon RG and Rossman T G: Bisulfite (sulfur dioxide) is a comutagen in E. coli and in Chinese hamster cells. Mutat Res, 1981; 88: 125-33
- ⁶³ Ishidate M, Jr., Sofuni T, Yoshikawa K, Hayashi M, Nohmi T, Sawada M et al.: Primary mutagenicity screening of food additives currently used in Japan. Food Chem Toxicol, 1984; 22: 623-36
- ⁶⁴ De Giovanni-Donnelly R: The mutagenicity of sodium bisulfite on basesubstitution strains of Salmonella typhimurium. Teratog Carcinog Mutagen, 1985; 5: 195-203
- ⁶⁵ Pagano DA and Zeiger E: Conditions affecting the mutagenicity of sodium bisulfite in Salmonella typhimurium. Mutat Res, 1987; 179: 159-66
- ⁶⁶ Prival MJ, Simmon VF, and Mortelmans KE: Bacterial mutagenicity testing of 49 food ingredients gives very few positive results. Mutat Res, 1991; 260: 321-9
- ⁶⁷ Kunz BA and Glickman BW: Absence of bisulfite mutagenesis in the lacI gene of Escherichia coli. Mutat Res, 1983; 119: 267-71
- ⁶⁸ Tsutsui T and Barrett JC: Sodium bisulfite induces morphological transformation of cultured Syrian hamster embryo cells but lacks the ability to induce detectable gene mutations, chromosome mutations or DNA damage. Carcinogenesis, 1990; 11: 1869-73
- ⁶⁹ Meng Z and Zhang B: Polymerase chain reaction-based deletion screening of bisulfite (sulfur dioxide)-enhanced gpt-mutants in CHO-AS52 cells. Mutat Res 1999; 425: 81-5
- ⁷⁰ Abe S and Sasaki M: Chromosome aberrations and sister chromatid exchanges in Chinese hamster cells exposed to various chemicals. J Natl Cancer Inst, 1977; 58: 1635-41
- ⁷¹ Popescu NC and DiPaolo JA: Chromosome alterations in Syrian hamster cells transformed in vitro by sodium bisulfite, a nonclastogenic carcinogen. Cancer Res. 1988; 48: 7246-51
- ⁷² Beckman L and Nordenson I: Interaction between some common genotoxic agents. Hum Hered, 1986; 36: 397-401
- ⁷³ Meng Z and Zhang L: Cytogenetic damage induced in human lymphocytes by sodium bisulfite. Mutat Res, 1992; 298: 63-9
- Meng Z, Qin G, Zhang B, and Bai J: DNA damaging effects of sulfur dioxide derivatives in cells from various organs of mice. Mutagenesis, 2004; 19: 465-8
- ⁷⁵ Uren N, Yuksel S, and Onal Y: Genotoxic effects of sulfur dioxide in human lymphocytes. Toxicol Ind Health, 2014; 30: 311-5
- ⁷⁶ Yavuz-Kocaman A, Rencuzogullari E, Ila HB, and Topaktas M: The genotoxic effect of potassium metabisulfite using chromosome aberration, sister chromatid

- exchange, micronucleus tests in human lymphocytes and chromosome aberration test in bone marrow cells of rats. Environ Mol Mutagen, 2008; 49: 276-82
- MacRae WD and Stich HF: Induction of sister chromatid exchanges in Chinese hamster cells by the reducing agents bisulfite and ascorbic acid. Toxicology, 1979; 13: 167-74
- ⁷⁸ Carvalho IM, Melo Cavalcante AA, Dantas AF, Pereira DL, Costa Rocha FC, Andrade TJ et al.: Genotoxicity of sodium metabisulfite in mouse tissues evaluated by the comet assay and the micronucleus test. Mutat Res, 2011; 720: 58-61
- ⁷⁹ Litton Bionetics: Mutagenic evaluation of compound FDA 71-20 sodium bisulfite. Submitted to FDA, NTIS PB-245456, 1972
- ⁸⁰ SRI (Stanford Research Institute) International: Study of the mutagenic effects of Sodium meta-bisulfite (71-22). Prepared for FDA, NTIS PB-221825, 1972
- ⁸¹ Renner HW and Wever J: Attempts to induce cytogenetic effects with sulphite in sulphite oxidase-deficient Chinese hamsters and mice. Food Chem Toxicol, 1983; 21: 123-7
- ⁸² Pal BB and Bhunya SP: Genotoxic effect of a preservative, sodium metabisulphite as revealed by mammalian in vivo bioassays. CYTOLOGIA, 1992; 57: 455-61
- 83 SRI (Stanford Research Institute) International: Study of the mutagenic effects of Sodium meta-bisulfite (76-73) by the dominant lethal test in rats. Prepared for FDA, NTIS PB-299836, 1979
- ⁸⁴ Rencüzogullari E, Ila HB, Kayraldiz A, and Topaktaş M: Chromosome aberrations and sister chromatid exchanges in cultured human lymphocytes treated with sodium metabisulfite, a food preservative. Mutat Res, 2001; 490: 107-12
- ⁸⁵ Meng Z, Qin G, and Zhang B: DNA damage in mice treated with sulfur dioxide by inhalation. Environ Mol Mutagen, 2005; 46: 150-5
- Meng Z and Zhang B: Induction effects of sulfur dioxide inhalation on chromosomal aberrations in mouse bone marrow cells. Mutagenesis, 2002; 17: 215-7
- Meng Z, Zhang B, Ruan A, Sang N, and Zhang J: Micronuclei induced by sulfur dioxide inhalation in mouse bone-marrow cells in vivo. Inhal Toxicol, 2002; 14: 303-9
- ⁸⁸ Ziemann C, Hansen T, Pohlmann G, Farrar D, Pohlenz-Michel C, Tillmann T et al.: Genotoxicity testing of sulfur dioxide (SO₂) in a mouse bone marrow micronucleus test complemented with hematological endpoints. Mutat Res, 2010; 697: 38-46
- ⁸⁹ Generoso WM, Huff SW, and Cain KT: Tests on induction of chromosome aberrations in mouse germ cells with sodium bisulfite. Mutat Res, 1978; 56: 363-5
- ⁹⁰ JECFA (FAO/WHO Joint Expert Committee on Food Additives): Toxicological evaluation of certain food additives and contaminants, Sulfur Dioxide and Sulfites. WHO Food Additives Ser 21, 1987
 - http://www.inchem.org/documents/jecfa/jecmono/v21je15.htm (アクセス日:

2019/2/13)

- ⁹¹ Til HP, Feron VJ, de Groot AP, and van der Wal P: The toxicity of sulphite. II. Short- and long-term feeding studies in pigs. Food Cosmet Toxicol, 1972; 10: 463-73
- ⁹² Til HP, Feron VJ, and De Groot AP: The toxicity of sulphite. I. Long-term feeding and multigeneration studies in rats. Food Cosmet Toxicol, 1972; 10: 291-310
- ⁹³ Beems RB, Spit BJ, Koëter HBWM, and Feron VJ: Nature and histogenesis of sulfite-induced gastric lesions in rats. Exp Mol Pathol, 1982; 36: 316-25
- ⁹⁴ Hui JY, Beery JT, Higley NA, and Taylor SL: Comparative subchronic oral toxicity of sulphite and acetaldehyde hydroxysulphonate in rats. Food Chem Toxicol, 1989; 27: 349-59
- 95 JECFA (FAO/WHO Joint Expert Committee on Food Additives): Toxicological evaluation of certain food additives and contaminants. Sulfur Dioxide and Sulfites. WHO Food Additives Ser 18, 1983.

 http://www.inchem.org/documents/jecfa/jecmono/v18je14.htm (アクセス日:

2019/3/12)

- ⁹⁶ Tanaka T, Fujii M, Mori H, and Hirono I: Carcinogenicity test of potassium metabisulfite in mice. Ecotoxicol Environ Saf, 1979; 3: 451-3
- 97 Feron VJ; Wensvoort P: Gastric lesions in rats after the feeding of sulphite. Pathol Eur, 1972; 7: 103-11
- ⁹⁸ Takahashi M, Hasegawa R, Furukawa F, Toyoda K, Sato H, and Hayashi Y: Effects of ethanol, potassium metabisulfite, formaldehyde and hydrogen peroxide on gastric carcinogenesis in rats after initiation with N-methyl-N'-nitro-N-nitrosoguanidine. Jpn J Cancer Res. (Gann), 1986; 77: 118-24
- 99 JECFA (FAO/WHO Joint Expert Committee on Food Additives): Safety evaluation of certain food additives, Preservatives Sulfur Dioxide and Sulfites. WHO Food Additives Ser 42, 1999 http://www.inchem.org/documents/jecfa/jecmono/v042je06.htm (アクセス日:

2018/12/6)

- ¹⁰⁰ Itami T, Ema M, Kawasaki H, and Kanoh S: Evaluation of teratogenic potential of sodium sulfite in rats. Drug and Chemical Toxicology, 1989; 12(2): 123-35
- ¹⁰¹ Ema M, Itami T, and Kanoh S: Effect of potassium metabisulfite on pregnant rats and their offspring (studies on the fetal toxicity of food additives. II). Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi), 1985; 26: 454-59
- Dulak, L., Chiang, G., & Gunnison, A.F. (1984). A sulfite oxidase-deficient rat model: reproductive toxicology of sulfite in the female. Food Chem. Toxicol., 22, 599-607.
- Nihal O, Piraye Y, Narin D, Deniz A, Aysel A, and Mutay A: Dose-dependent effect of nutritional sulfite intake on visual evoked potentials and lipid peroxidation. Neurotoxicology and Teratology, 2011; 33: 244-54
- Derin N, Akpinar D, Yargicoglu P, Agar A and Aslan M: Effect of alpha-lipoic acid on visual evoked potentials in rats exposed to sulfite. Neurotoxicology and Teratology, 2009; 31: 34-39
- ¹⁰⁵ Kencebay C, Derin N, Ozsoy O, Kipmen-Korgun D, Tanriover G, Ozturk N, Basaranlar G, Yargicoglu-Akkiraz P, Sozen B and Agar A: Merit of quinacrine

- in the decrease of ingested sulfite-induced toxic action in rat brain. Food and Chemical Toxicology, 2013; 52: 129-36
- Noorafshan A, Asadi-Golshan R, Karbalay-Doust S, Abdollahifar MA and Rashidiani-Rashidabadi A: Curcumin, the main part of turmeric, prevents learning and memory changes induced by sodium metabisulfite, a preservative agent, in rats. Experimental Neurobiology, 2013; 22: 23-30
- ¹⁰⁷ Karimfar MH, Noorafshan A, Rashidiani-Rashidabadi A, Poostpasand A, Asadi-Golshan R, Abdollahifar MA and Karbalay-Doust S: Curcumin prevents the structural changes induced in the rats' deep cerebellar nuclei by sodium metabisulfite, a preservative agent. Asian Pacific Journal of Tropical Medicine, 2014; 7: S301-5
- Noorafshan A, Asadi-Golshan R, Abdollahifar MA and Karbalay-Doust S: Protective role of curcumin against sulfite-induced structural changes in rats' medial prefrontal cortex. Nutritional Neuroscience, 2015; 18: 248-55
- Prenner BM and Stevens JJ: Anaphylaxis after ingestion of sodium bisulfite. Ann Allergy, 1976; 37: 180-2
- ¹¹⁰ Freedman BJ: Asthma induced by sulphur dioxide, benzoate and tartrazine contained in orange drinks. Clin Allergy, 1977; 7: 407-15
- ¹¹¹ Baker GJ, Collett P, and Allen DH: Bronchospasm induced by metabisulphite-containing foods and drugs. Med J Aust, 1981; 2: 614-7
- ¹¹² Stevenson DD and Simon RA: Sensitivity to ingested metabisulfites in asthmatic subjects. J Allergy Clin Immunol, 1981; 68: 26-32
- ¹¹³ Schwartz HJ: Sensitivity to ingested metabisulfite: variations in clinical presentation. J Allergy Clin Immunol, 1983; 71: 487-9
- Sonin L and Patterson R: Metabisulfite challenge in patients with idiopathic anaphylaxis. J Allergy Clin Immunol, 1985; 75: 67-9
- Yang WH, Purchase EC, and Rivington RN: Positive skin tests and Prausnitz-Küstner reactions in metabisulfite-sensitive subjects. J Allergy Clin Immunol, 1986; 78: 443-9
- Acosta R, Granados J, Mourelle M, Perez-Alvarez V, and Quezada E: Sulfite sensitivity: relationship between sulfite plasma levels and bronchospasm: case report. Ann Allergy, 1989; 62: 402-5
- ¹¹⁷ Sprenger JD, Altman LC, Marshall SG, Pierson WE, and Koenig JQ: Studies of neutrophil chemotactic factor of anaphylaxis in metabisulfite sensitivity. Ann Allergy, 1989; 62: 117-21
- Sokol WN and Hydick IB: Nasal congestion, urticaria, and angioedema caused by an IgE-mediated reaction to sodium metabisulfite. Ann Allergy, 1990; 65: 233-8
- Belchi-Hernandez J, Florido-Lopez JF, Estrada-Rodriguez JL, Martinez-Alzamora F, Lopez-Serrano C, and Ojeda-Casas JA: Sulfite-induced urticaria. Ann Allergy, 1993; 71: 230-2
- Wüthrich B: Adverse reactions to food additives. Ann Allergy, 1993; 71: 379-84
- Wüthrich B, Kägi MK, and Hafner J: Disulfite-induced acute intermittent urticaria with vasculitis. Dermatology, 1993; 187: 290-2
- Gastaminza G, Quirce S, Torres M, Tabar A, Echechipía S, Muñoz D et al.: Pickled onion-induced asthma: a model of sulfite-sensitive asthma? Clin Exp

- Allergy, 1995; 25: 698-703
- Gall H, Boehncke WH, and Gietzen K: Intolerance to sodium metabisulfite in beer. Allergy, 1996; 51: 516-7
- Park HS and Nahm D: Localized periorbital edema as a clinical manifestation of sulfite sensitivity. J Korean Med Sci, 1996; 11: 356-7
- ¹²⁵ Vally H and Thompson PJ: Role of sulfite additives in wine induced asthma: single dose and cumulative dose studies. Thorax, 2001; 56: 763-9
- ¹²⁶ Asero R: Food additive-induced chronic pruritus: further evidence. Clin Exp Dermatol, 2005; 30: 719-20
- ¹²⁷ Botey J, Cozzo M, Eseverri JL, and Marin A: Sulfites and skin pathology in children. Allergol Immunopathol, 1987; 15: 365-7
- Robert KB, Steve LT, Karen H Julie AN, William WB: Prevalence of sensitivity to sulfiting agents in asthmatic patients. The American Journal of Medicine, 1986; 81: 816-20
- Fine JM, Gordon T and Sheppard D: The roles of pH and ionic species in sulfur dioxide and sulfite induced bronchoconstriction. The American Review of Respiratory Disease, 136, 1122-6
- ¹³⁰ Taylor SL, Bush RK, Selner JC, Nordlee JA, Wiener MB, Holden K, et al.: Sensitivity to sulfited foods among sulfite-sensitive subjects with asthma. J Allergy Clin Immunol, 1988; 81:1159-67
- ¹³¹ Tsevat J, Gross GN, and Dowling GP: Fatal asthma after ingestion of sulfite-containing wine. Ann Intern Med, 1987; 107: 263
- 132 宮澤 英彦, 嶋津 苗胤、松本 賢太郎: ワインに含まれた亜硫酸塩によリアナフイラキシーを生じた1例. 臨皮, 2018; 72: 211-4
- Rost E and Franz F: Vergleichende Untersuchung der harmakologischen Wirkungen der organisch gebundenen schwefligen Säuren und des neutralen schwefligsäuren Natriums. II. Teil. Arb Gsndhtsamte (Berl.), 1913; 43: 187-303
- Tollefson L: Monitoring adverse reactions to food additives in the U.S. Food and Drug Administration. Regul Toxicol Pharmacol, 1988; 8: 438-46
- ¹³⁵ Linneberg A, Berg ND, Gonzalez-Quintela A, Vidal C, and Elberling J: Prevalence of self-reported hypersensitivity symptoms following intake of alcoholic drinks. Clin Exp Allergy, 2008; 38: 145-51
- La Fontaine A and Goblet J: La toxicité des sulfites. Arch Belges Med Soc, 1955; 13: 281-7
- 137 Willis J: Sulfite update. FDA Drug Bulletin, 1984; 14: 24
- ¹³⁸ Van Schoor J, Joos GF and Pauwels RA: Indirect bronchial hyperresponsiveness in asthma: mechanisms, pharmacology and implications for clinical research. European Respiratory Journal, 2000; 16: 514-33
- Nair B and Elmore AR: Final report on the safety assessment of sodium sulfite, potassium sulfite, ammonium sulfite, sodium bisulfite, ammonium bisulfite, sodium metabisulfite and potassium metabisulfite. Int J Toxicol, 2003; 22 Suppl 2: 63-88
- Vally H and Misso N LA: Adverse reactions to the sulphite additives. Gastroenterol Hepatol Bed Bench, 2012; 5: 16-23
- 141 Wüthrich B: Allergic and intolerance reactions to wine. Allergologie Select,

2018; 2: 80-8

- 142 厚生労働省:令和2年度マーケットバスケット方式による保存料及び着 色料の摂取量調査の結果について
- 143 国立医薬品食品衛生研究所食品添加物部:令和5年度 食品・添加物等規格基準 に関する試験検査等 食品添加物一日摂取量調査等研究報告書
- 144 消費者庁:令和5年度マーケットバスケット方式による保存料等の摂取量調査の 結果について
- 145 令和元年度厚生労働科学研究費補助金 (食品の安全確保推進研究事業)「食品添加物の安全性確保に資する研究」分担研究「食品添加物の摂取量推計及び香料規格に関する研究」: 生産量統計調査を基にした食品添加物摂取量の推定に関わる研究その1 指定添加物品目 (第12回最終報告),令和2年3月
- 146 令和4年度厚生労働科学研究費補助金(食品の安全確保推進研究事業)「食品添加物の試験法の検討及び摂取量に基づく安全性確保に向けた研究」分担研究「食品添加物生産量調査・香料使用量及び SPET 法による調査に基づく摂取量推計に関する研究」: 生産量統計調査を基にした食品添加物摂取量の推定に関わる研究その1 指定添加物品目(第13回最終報告),令和5年3月
- 147 厚生労働省:平成28年国民・健康栄養調査報告,2017年
- 148 厚生労働省:平成30年国民・健康栄養調査報告,2020年
- 149 厚生労働省:令和5年国民・健康栄養調査報告,2024年
- 150 マーケティングレポート (2012年2月号), 富士経済, 2012:12-7
- 151 清口 正夫: 2022 年食品マーケッティング便覧 No.2, 富士経済, 2021; 158-9, 228-9
- 152 日本アルコールフリー飲料有限会社: 亜硫酸ナトリウム・次亜硫酸ナトリウム・ 二酸化硫黄・ピロ亜硫酸ナトリウム及びピロ亜硫酸カリウムの使用基準改正に関 する概要書 別紙9 (2022年11月4日修正), 2022
- 153 水村典弘: ノンアルコール飲料の事例研究,日本経営倫理学会誌,2017;第 24 号:337-48
- 154 総務省統計局:人口推計 第2表都道府県,年齢(5 歳階級),男女別人口-総人口,日本人人口(2020年10月1日現在)

https://www.e-stat.go.jp/stat-

search/files?page=1&layout=datalist&toukei=00200524&tstat=000000090001&cycle=7&year=20200&month=0&tclass1=000001011679

(アクセス日:2022年10月21日)

- 155 厚生労働省:食品健康影響評価に係る補足資料の提出について、薬生食基発 1122 第3号令和4年11月22日付け厚生労働省医薬・生活衛生局食品基準審査課 長通知
- 156 独立行政法人 国立健康・栄養研究所:平成22年度 厚生労働省 食品等試験検 査費事業 食品摂取頻度・摂取量調査の特別集計業務報告書
- 157 平成 17 年度~平成 19 年度調査 ぶどう果汁入り飲料 4 種(多田専門委員作成)
- 158 薬事・食品衛生審議会食品衛生分科会:食品添加物の指定等に関する薬事・食品衛生審議会食品衛生分科会毒性・添加物合同部会報告について(薬食審第 0627013 号)
- 159 食品安全委員会:厚生労働省発食安第 0701017 号における亜硫酸塩類に係る食

- 品健康影響評価の結果の通知について、府食 130 号平成 15 年 9 月 25 日付け食品 安全委員会通知
- 160 JECFA (FAO/WHO Joint Expert Committee on Food Additives): Toxicological evaluation of certain food additives with a review of general principles and of specifications. Seventeenth report of the joint FAO-WHO Expert Committee on Food Additives. World Health Organ Tech Rep Ser 539, 1974 http://www.inchem.org/documents/jecfa/jecmono/v05je19.htm (アクセス日: 2019/2/13)
- JECFA (FAO/WHO Joint Expert Committee on Food Additives): Toxicological evaluation of some food additives including anticaking agents, antimicrobials, antioxidants, emulsifiers and thickening agents. WHO Food Additives Ser 5, 1974
- JECFA (Joint FAO/WHO Expert Committee on Food Additives): Evaluation of certain food additives. Twent report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organ Tech Rep Ser 599, 1976
- ¹⁶³ JECFA (Joint FAO/WHO Expert Committee on Food Additives): Evaluation of certain food additives and contaminants. Twenty-seventh report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organ Tech Rep Ser 696, 1983
- ¹⁶⁴ JECFA (FAO/WHO Joint Expert Committee on Food Additives): Evaluation of certain food additives. Fifty-first report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organ Tech Rep Ser 891, 2000
- 165 JECFA (FAO/WHO Joint Expert Committee on Food Additives): Safety evaluation of certain food additives, EVALUATION OF NATIONAL ASSESSMENTS OF INTAKE OF SULFITES. WHO Food Additives Ser 42, 1999 http://www.inchem.org/documents/jecfa/jecmono/v042je25.htm (アクセス日: 2019/3/8)
- ¹⁶⁶ JECFA (FAO/WHO Joint Expert Committee on Food Additives): Evaluation of certain food additives. Sixty-ninth report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organ Tech Rep Ser 952, 2009
- ¹⁶⁷ LSRO (Life Sciences Research Office), FASEB (Federation of American Societies for Experimental Biology): Evaluation of the health aspects of sulfiting agents as food ingredients. Prepared for FDA, NTIS PB-265508, 1976
- ¹⁶⁸ FASEB (Federation of American Societies for Experimental Biology): The Reexamination of the Gras Status of Sulfiting Agents, 1985
- 169 EC (European Commission): food science and techniques, Opinions of the Scientific Committee for Food on: Propylene glycol Alternatively refined carrageenan produced from Eucheuma cottonii and cortonii and Eucheuma spinosum p-Hydroxybenzoic acid alkyl esters and their sodium salts Specifications for food additives Sorbic acid and its calcium and potassium salts Sulphur dioxide and other sulphiting agents Benzoic acid and its salts Hexane used as an extraction solvent Lindane in baby food Cross-linked sodium carboxymethylcellulose (modified cellulose gum) Invertase derived from Saccharomyces cerevisiae Aflatoxins, Ochratoxin A and Patulin. Reports of the Scientific Committee for Food Thirty-fifth series, 1996
- 170 ANZFA (Australia New Zealand Food Authority): Statement of Reasons

Application A391Sulphur dioxide: For use in fresh cut avocados, 2000

- ¹⁷¹ FSANZ (Food Standards Australia New Zealand): Approval Report Application A1088 Sodium Hydrosulphite as a Food Additive, 2014
- ¹⁷² FSANZ (Food Standards Australia New Zealand): Supporting document 1 Risk and technical assessment report (at Approval) Application A1088 Sodium Hydrosulphite as a Food Additive, 2014
- ¹⁷³ FSANZ (Food Standards Australia New Zealand): Supporting document 1 Risk and technical assessment Application A1127 Processing Aids in Wine, 2017

亜硫酸ナトリウム、次亜硫酸ナトリウム、二酸化硫黄、ピロ亜硫酸カリウム及びピロ亜硫 酸ナトリウム並びに亜硫酸水素アンモニウム水に係る食品健康影響評価に関する審議結果 (案) についての意見・情報の募集結果について

- 令和7年5月28日~令和7年6月26日 1. 実施期間
- 2. 提出方法 インターネット、ファックス、郵送
- 3. 提出状況 3通
- 4. 意見・情報及び食品安全委員会の回答

意見•情報※

食品安全委員会の回答

について再度検討をお願いします。

る排泄試験 (Savic ら (1987)) の結果 す。 に、「尿中総硫酸濃度」と「尿中有機硫酸 濃度」という用語があります。

原著論文を確認したところ、これらの用 語はそれぞれ「total urinary sulfates」、 「organic urinary sulfates」と記載されてい ましたので、ここでの測定対象は硫酸では ないと思います。これらの語について再度 検討したほうがいいのではないでしょう か。

② SOX活性の試験について、in vivoの試 ・原著論文(参照 44)において、ラットと 験結果が含まれているようです。

vitroで比較した結果、ラットではウサギと との比較は in vitro にて実施されております 比較して約3倍、サルと比較して約5倍の活ので、ご指摘を踏まえ、別紙のとおり評価 性であったこと」と記載されています。

このことについて原著論文(参照44)を 確認した結果、この試験はin vivo kinetic methodsを用いた、と記載されていましたの で、この部分はin vivoの試験のことではな いかと思います。

て、語句に誤りがあるように思います。

同じく評価書案29ページのSOX活性のin vitroにおける比較について、「また、サル と比較してラットでは SOX 活性が高い が、ラットでは一貫して血清中に低濃度のS-スルホン酸が検出された一方で、サルでは 外因性のS-スルホン酸が検出されなかったと されている。」と記載されています。

1 ① 「総硫酸濃度」「有機硫酸濃度」の語 ・原著論文上の「sulfates」は「硫酸イオ ン」を指していますので、ご指摘を踏ま 評価書案37ページに記載されたヒトにおける、別紙のとおり評価書を修正いたしま

ウサギ、サルの SOX 活性を比較した手法は 評価書案29ページには、「SOX活性をin in vivo で実施しており、ラット肝臓とヒト 書を修正いたします。

③S-スルホン酸の検出に関する記述につい ・ご指摘を踏まえ、別紙のとおり評価書を 修正いたします。

原著論文(参照 45)には、「ラットでは 一貫して血清中に低濃度の S-スルホン酸が 検出された一方で、サルにおいては内因性 の S-スルホン酸は検出されなかった」とい う記載がありましたので、評価書中の「外 因性」の語は「内因性」ではないかと思い ます。

2 □ 今回整理した「ヒトにおける知見」につ・ご意見いただきありがとうございます。 いて、リスク管理機関(食品表示の担当部 局等を含む)に情報提供し、連携すべきで|供をリスク管理機関である消費者庁に行い す。

貴委員会は2020年に亜硫酸水素アンモニ ウム水の食品健康影響評価(リスク評価) を行っていますが、今回は、より広く亜硫 酸塩等について、多数の文献を収集した上 でそれらの内容を精査し、「Ⅱ. 安全性に係 る知見の概要」の「3. ヒトにおける知見」 では、「特に、気管支喘息患者においては 数~10%程度の者が亜硫酸塩に過敏に反応 したとする複数の報告がある」とまとめて います。議事録によれば、貴委員会の委員 や専門委員も、食品表示等を含む患者への 情報提供の必要性や、リスク評価機関・リ スク管理機関の両者がこの問題をしつかり 見ていく必要性に言及しています。

最終的に、評価書案の書きぶりとしては 「二酸化硫黄及び亜硫酸塩による過敏性反 応の発症機序等に関する新たな知見の集積 を注視すべきと考えた(V. 食品健康影響評 価)」に留まってはいますが、国内にも多 数の気管支喘息患者が存在することを考慮 し、実態調査や対応につなげていくべきで はないでしょうか。その意味では、現時点 でアレルギー様反応誘発の最低誘発用量や 発症機序が明確でなくても、今回精査した 文献情報や専門調査会の議論の内容をリス ク管理機関(食品表示の担当部局を含む) に提供し、連携することは有意義と考えま す。例えば、消費者庁には「食物アレルギ ー表示に関するアドバイザー会議」があ り、こうした場で貴委員会から報告を行 い、今後の対応について意見を聞くことも 有用と考えます。

いただいたご意見に沿って必要な情報提 ます。

が必要と考えます。

ムの発生毒性試験 (Itamiら(1989))では、最 mg/kg 体重/日) でも胎児体重の有意な減少 がみられたことから、80 mg/kg 体重/日を NOAELは80 mg/kg 体重/日よりも低いとこ ろに存在すると推定されますが、一方でこ 71mg/kg 体重/日とかなり近いものになっ のか、もう少し説明が必要ではないでしょ うか。

② ラット発生毒性試験の判断について説明 ・従前の食品添加物「亜硫酸水素アンモニ ウム水」における評価*1では、ご指摘の 評価書案58ページ以降に記載されてい Itami ら(1989)を含め、今般の評価で る、Wistarラットを用いた亜硫酸ナトリウ NOAEL 等が判断できた毒性知見群が一致し ているところ、それらの知見等を基に、毒 低用量の0.32% (二酸化硫黄として80|性影響が重篤でない等の理由から ADI を特 定する必要はないとしました。今般の評価 においてもそれらの毒性知見群について、 LOAELと判断しています。そして、この内 個々の知見に対する判断は変わっておりま 容はその後の「(7)毒性のまとめ」にも改め|せん。一方で、今般参考資料として追加さ て記載されています。本試験における|れた視神経毒性の知見(Ozturk ら (2011)) 等)等を根拠に神経毒性の懸念があるた め、毒性影響が重篤でない等の理由から の値は毒性試験全体の最小のNOAELである | ADI を特定する必要はないと判断した過去 の評価とは異なり、ADI を設定することと ています。したがって、毒性試験全体の最なったものの、神経毒性の知見からは 小のNOAELを71mg/kg 体重/日と判断する NOAEL 等を判断できませんでした**2。そ に当たり、このLOAELの値をどう判断した のため、現在あるデータを基にエキスパー トジャッジを行った結果、「添加物に関する 食品健康影響評価指針」(令和3年9月28日 食品安全委員会決定) に則り、毒性試験全 体の最小 NOAEL から ADI を設定したもの です。

> ※1「亜硫酸水素アンモニウムは、(中略)「亜 硫酸塩等」と「亜硫酸水素アンモニウム水」を グループとして評価を行うことが適当と判断し た。」(評価書要約より抜粋)とされた

> ※2「視覚系の構造及び機能に多くの種差があ り、ヒトへの外挿が困難であることから、視覚 神経毒性に係る NOAEL 等を判断することは適 切でない」(評価書2. 毒性(7) 毒性のまとめ より抜粋)

「亜硫酸塩等」の使用基準改正案における「理に関するものであると考えられることか 下線部分を下記「 」内のように改める。

「ノンアルコールワイン(ぶどう酒から 酒精分を1容量パーセント未満に除去したも の及びこれにぶどう果汁(濃縮ぶどう果汁 を含む。以下この目において同じ)を加え たものに限る。以下この目において同 じ。) 及びノンアルコールワインに加える ぶどう果汁」

審議結果(案)20-21ページ記載の表5 ・使用基準案に関する御意見は、リスク管 ら消費者庁へ情報提供いたします。

今回の使用基準の改正は審議結果(案)7ページの要約にある通りノンアルコールワインにおいてもぶどう酒と同程度の「亜硫酸塩等」を使用できるようにするための規格基準の改正である。

このことはノンアルコールワインの食品 分類が清涼飲料水からCodexの分類によるぶ どう酒の同等品に移されたものとみなすこ ともできる。このことから原案の「清涼飲 料水」を「ノンアルコールワイン」に代え ることは今回の改正の目的が明確になると ともに消費者の健康の保護及び食品流通の 各段階における円滑化の向上にもつながる ものと考え意見とする次第である。

[※] 頂いた御意見・情報をそのまま掲載しています。

(別紙)

添加物評価書「亜硫酸塩等(亜硫酸ナトリウム、次亜硫酸ナトリウム、二酸化硫黄、 ピロ亜硫酸カリウム、ピロ亜硫酸ナトリウム)及び亜硫酸水素アンモニウム水」の変 更点

※修正箇所の欄は、意見・情報の募集時の公開資料におけるページ数等(下線部修正)

修正箇所	第 995 回食品安全委員会資料	意見・情報の募集時の資料
	(変更後)	(変更前)
29 ページ	SOX 活性を比較した結果、ラット	SOX 活性を <u>in vitro で</u> 比較した結
下から 13	ではウサギと比較して約3倍、サルと	果、ラットではウサギと比較して約3
行目	比較して約5倍の活性であったこと、	倍、サルと比較して約5倍の活性であ
	また、ラット肝臓ではヒトと比較して	ったこと、また、ラット肝臓ではヒト
	約 10~20 倍の活性が示されたとされ	と比較して約 10~20 倍の活性が示さ
	ている。また、サルと比較してラット	れたとされている。また、サルと比較
	では SOX 活性が高いが、ラットでは	してラットでは SOX 活性が高いが、
	一貫して血清中に低濃度の S-スルホ	ラットでは一貫して血清中に低濃度の
	ン酸が検出された一方で、サルでは <u>内</u>	S-スルホン酸が検出された一方で、サ
	<u>因性</u> の S-スルホン酸が検出されなか	ルでは <u>外因性</u> の S-スルホン酸が検出
	ったとされている。	されなかったとされている。
37ページ	二酸化硫黄を使用している工場にお	二酸化硫黄を使用している工場にお
上から8行	いて、二酸化硫黄に職業上ばく露して	いて、二酸化硫黄に職業上ばく露して
目	いる勤務者(ばく露群、性別不明)	いる勤務者(ばく露群、性別不明)
	56 名(冬期)及び38 名(夏期)並	56 名(冬期)及び38 名(夏期)並
	びにばく露していない勤務者(対照	びにばく露していない勤務者(対照
	群、性別不明) 39 名を対象にして、	群、性別不明) 39 名を対象にして、
	尿中の <u>総硫酸イオン濃度</u> 及び <u>有機硫酸</u>	尿中の <u>総硫酸濃度</u> 及び <u>有機硫酸濃度</u> を
	<u>イオン濃度</u> を調べる試験が実施され、	調べる試験が実施され、表 11 の結果
	表 11 の結果が得られた。	が得られた。
37ページ	表 11 <u>尿中総硫酸イオン濃度</u> 及び <u>尿</u>	表 11 <u>尿中総</u> 及び <u>有機硫酸濃度</u>
表 11	中有機硫酸イオン濃度	
	空 気 尿中総硫酸 尿中有機硫	空 気 尿中総硫酸 尿中有機硫
	中 の <u>イオン濃度</u> <u>酸イオン濃</u>	中の 濃度 酸濃度
	二酸	二酸被制測定性級無測定性
	化 硫 被験 測定 被験 測定	化 硫 者数 結果 者数 結果
	黄濃者数は無者数は結果	黄 濃 (μ (μ
	度 (名 (μ (名 (μ	度) mol/) mol/
	(mg) mol/) mol/	(mg L) L)
	$/m^3$) L) L)	/m³)
37ページ	空気中の二酸化硫黄濃度は、冬期に	空気中の二酸化硫黄濃度は、冬期に
下から 11	は 17.1~149.4 mg/m³、夏期には 0~	は $17.1\sim149.4~\text{mg/m}^3$ 、夏期には $0\sim$
行目	0.75 mg/m^3 であった。また、ばく露	$0.75~{ m mg/m^3}$ であった。また、ばく露
	群の尿中総硫酸イオン濃度及び尿中有	群の尿中総硫酸濃度及び尿中有機硫酸
	機硫酸イオン濃度は、いずれも対照群	<u>濃度</u> は、いずれも対照群と比較し有意

	と比較し有意に高かった。	に高かった。
	Savic ら(1987)は、空気中の二	Savic ら(1987)は、空気中の二
	酸化硫黄濃度が高いと尿中硫酸イオン	酸化硫黄濃度が高いと尿中硫酸濃度が
	<u>濃度</u> が高くなるとしている。	高くなるとしている。
<参照> ^{注1}	1~108 (略)	1~108 (略)
	(削る)	109 食品安全委員会:添加物評価書
		「亜硫酸水素アンモニウム水」.
		2020年12月
	<u>109~130</u> (略)	<u>110</u> ~ <u>131</u> (略)
	(削る)	132 食品安全委員会:添加物評価書
		「亜硫酸水素アンモニウム水」.
	191.179 (m/7)	2020年12月
	<u>131</u> ~ <u>173</u> (略)	133~175 (略)

注1) 本文中の参照文献番号についても、文献番号変更に伴い修正いたしました。